Effects of Nuclear Vibrations on the Energetics of Polythiophene: Quantized Energy Molecular Dynamics
Sergei ManzhosDepartment of Mechanical Engineering, Faculty of Engineering, National University of Singapore, Block EA, #07-08, 9 Engineering Drive 1, Singapore 117576. Email: mpemanzh@nus.edu.sg
Australian Journal of Chemistry 66(9) 1021-1028 https://doi.org/10.1071/CH13112
Submitted: 7 March 2013 Accepted: 18 April 2013 Published: 15 May 2013
Abstract
The effects of nuclear dynamics on the energetics of polythiophene relevant for the performance of organic solar cells are studied for the first time. Nuclear motions change the expectation values of frontier orbital energies and the band gap by ~0.1 eV versus values at the equilibrium geometry, which is expected to have a significant effect on light absorption, charge separation, and donor regeneration. A new molecular dynamics algorithm that accounts for the quantum nature of vibrations is introduced. It reproduces effects of temperature and deuteration that are lost in the standard molecular dynamics. Inclusion of quantized vibrations leads to a broadening of the band gap and of energy levels by ~20 % at 300 K, while having little effect on their expectation values (which change by up to 0.03 eV). Increase in temperature from 300 to 400 K and deuteration cause an additional broadening of the spectrum by ~26 and 21 % respectively.
References
[1] T. M. Clarke, J. R. Durrant, Chem. Rev. 2010, 110, 6736.| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXjs1yksg%3D%3D&md5=4c117634a5e4ad52233a2e6e04511ca0CAS | 20063869PubMed |
[2] A. Hagfeldt, G. Boschloo, L. Sun, L. Kloo, H. Pettersson, Chem. Rev. 2010, 110, 6595.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXhtFChs77M&md5=c642c534442acc282ae0cbe38e53f443CAS | 20831177PubMed |
[3] C. S. Tao, J. Jiang, M. Tao, Sol. Energy Mater. Sol. Cells 2011, 95, 3176.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXht1ymsL%2FE&md5=8401bead62d25f5fe46f69cda631febbCAS |
[4] P. K. Nayak, G. Garcia-Belmonte, A. Kahn, J. Bisquert, D. Cahen, Energy. Environ. Sci. 2012, 5, 6022.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XivFWntLc%3D&md5=52dbb71dc46065f21abb13a806e60258CAS |
[5] N. Martsinovich, A. Troisi, Energy. Environ. Sci. 2011, 4, 4473.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXhsVyrtb7J&md5=2720a4edc509cb0695da8b02bdf688a3CAS |
[6] A. Listorti, B. O’Regan, J. R. Durrant, Chem. Mater. 2011, 23, 3381.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXlslKhurw%3D&md5=7481e541d4eda75a05952d8f89ff5069CAS |
[7] M. Wang, C. Graetzel, S. M. Zakeeruddin, M. Graetzel, Energy. Environ. Sci. 2012, 5, 9394.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XhsFCjs7fF&md5=52c86e84489dff3afa511711beb994cfCAS |
[8] V. Coropceanu, J. Cornil, D. A. da Silva Filho, Y. Olivier, R. Silbey, J.-L. Bredas, Chem. Rev. 2007, 107, 926.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXjt1ymsb8%3D&md5=7e5651bce95bfffb53d90bd73b27ff5fCAS | 17378615PubMed |
[9] W. R. Duncan, O. V. Prezhdo, Annu. Rev. Phys. Chem. 2007, 58, 143.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXlslSitrw%3D&md5=23561846c40c0e234c4477475deaa31aCAS | 17059368PubMed |
[10] O. V. Prezhdo, W. R. Duncan, V. V. Prezhdo, Prog. Surf. Sci. 2009, 84, 30.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXhs1Ciurw%3D&md5=b62b8a550a9976ce38a2c57a705af176CAS |
[11] S. Manzhos, H. Segawa, K. Yamashita, Chem. Phys. Lett. 2012, 527, 51.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XisFWqsrY%3D&md5=85d5c3d8f6391d01639c23e28a5ade72CAS |
[12] S. Manzhos, H. Segawa, K. Yamashita, Phys. Chem. Chem. Phys. 2012, 14, 1749.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XntlKqtA%3D%3D&md5=ffdec0b99e5a8506dfdeb229b58aa9d0CAS | 22194034PubMed |
[13] S. Manzhos, H. Segawa, K. Yamashita, Proc. SPIE 2012, 8438, 843814.
| Crossref | GoogleScholarGoogle Scholar |
[14] S. Manzhos, H. Segawa, K. Yamashita, Phys. Chem. Chem. Phys. 2013, 15, 1141.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XhvVClu7vL&md5=b4db39f20e330b57fa82ba9d2811d038CAS | 23223414PubMed |
[15] S. Manzhos, H. Segawa, K. Yamashita, Computation 2013, 1, 1.
| Crossref | GoogleScholarGoogle Scholar |
[16] D. Marx, J. Hutter, Ab Initio Molecular Dynamics: Basic Theory and Advanced Methods 2009 (Cambridge University Press: Cambridge, UK).
[17] S. A. Adcock, J. A. McCammon, Chem. Rev. 2006, 106, 1589.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28Xht1eqtro%3D&md5=e14a993b05ee5263c5048552de872c96CAS | 16683746PubMed |
[18] D. C. Rapaport, The Art of Molecular Dynamics Simulation 2004 (Cambridge University Press: Cambridge, UK).
[19] D. A. McQuarrie, J. D. Simon, Physical Chemistry: a Molecular Approach 1997 (University Science Books: Herndon, VA).
[20] G. D. Billing, Dynamics of Molecule Surface Interactions 2000 (John Wiley & Sons: New York NY).
[21] S. Manzhos, J. Fujisawa, H. Segawa, K. Yamashita, Jpn J. Appl. Phys. 2012, 51, 10NE03.
| Crossref | GoogleScholarGoogle Scholar |
[22] W. D. Cornell, P. Cieplak, C. I. Bayly, I. R. Gould, K. M. Merz, D. M. Ferguson, D. C. Spellmeyer, T. Fox, J. W. Caldwell, P. A. Kollman, J. Am. Chem. Soc. 1995, 117, 5179.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2MXlsFertrc%3D&md5=1c85354ddc67574db35c524c4d069ce3CAS |
[23] D. A. Case, T. A. Darden, T. E. Cheatham, III, C. L. Simmerling, J. Wang, R. E. Duke, R. Luo, R. C. Walker, W. Zhang, K. M. Merz, B. Roberts, S. Hayik, A. Roitberg, G. Seabra, J. Swails, A. W. Goetz, I. Kolossváry, K. F. Wong, F. Paesani, J. Vanicek, R. M. Wolf, J. Liu, X. Wu, S. R. Brozell, T. Steinbrecher, H. Gohlke, Q. Cai, X. Ye, J. Wang, M.-J. Hsieh, G. Cui, D. R. Roe, D. H. Mathews, M. G. Seetin, R. Salomon-Ferrer, C. Sagui, V. Babin, T. Luchko, S. Gusarov, A. Kovalenko, and P. A. Kollman, AMBER 12 2012 (University of California, San Francisco, CA).
[24] B. R. Brooks, C. L. Brooks, A. D. Mackerell, L. Nilsson, R. J. Petrella, B. Roux, Y. Won, G. Archontis, C. Bartels, S. Boresch, A. Caflisch, L. Caves, Q. Cui, A. R. Dinner, M. Feig, S. Fischer, J. Gao, M. Hodoscek, W. Im, K. Kuczera, T. Lazaridis, J. Ma, V. Ovchinnikov, E. Paci, R. W. Pastor, C. B. Post, J. Z. Pu, M. Schaefer, B. Tidor, R. M. Venable, H. L. Woodcock, X. Wu, W. Yang, D. M. York, M. Karplus, J. Comput. Chem. 2009, 30, 1545.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXms1Ciu70%3D&md5=e41a7f77557f0e34d52b57aefe967aafCAS | 19444816PubMed |
[25] J. Wang, R. M. Wolf, J. W. Caldwell, P. A. Kollman, D. A. Case, J. Comput. Chem. 2004, 25, 1157.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXksFakurc%3D&md5=de36755707200a5fabcfa3224c20abb6CAS | 15116359PubMed |
[26] M. Ceriotti, G. Bussi, M. Parrinello, Phys. Rev. Lett. 2009, 103, 030603.
| 19659261PubMed |
[27] W. Kohn, L. J. Sham, Phys. Rev. 1965, 140, A1133.
| Crossref | GoogleScholarGoogle Scholar |
[28] J. M. Soler, E. Artacho, J. D. Dale, A. Garcia, J. Junquera, P. Ordejon, D. Sanchez-Portal, J. Phys. Condens. Matter 2002, 14, 2745.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38XivFGrsL4%3D&md5=451291ee5b1b00af33b2bf9437df2c5aCAS |
[29] J. P. Perdew, K. Burke, M. Ernzerhoff, Phys. Rev. Lett. 1996, 77, 3865.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK28XmsVCgsbs%3D&md5=97159d10c93a710a41bff24098768275CAS | 10062328PubMed |
[30] E. Artacho, E. Anglada, O. Dieguez, J. D. Gale, A. Garcia, J. Junquera, R. M. Martin, P. Ordejon, J. M. Pruneda, D. Sanchez-Portal, J. M. Soler, J. Phys. Condens. Matter 2008, 20, 064208.
| Crossref | GoogleScholarGoogle Scholar | 21693870PubMed |
[31] N. Troullier, J. L. Martins, Phys. Rev. B 1991, 43, 1993.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK3MXovVyktw%3D%3D&md5=ac3422e279379298c691129701e9d3ffCAS |
[32] W. Humphrey, A. Dalke, K. Schulten, J. Mol. Graph. 1996, 14, 33.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK28Xis12nsrg%3D&md5=a1edff5525502e01390af799523b230bCAS | 8744570PubMed |
[33] H. J. C. Berendsen, J. P. M. Postma, W. F. van Gunsteren, A. DiNola, J. R. Haak, J. Chem. Phys. 1984, 81, 3684.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL2cXmtlGksbY%3D&md5=162fb37fc1006929c8adf64d16749c3aCAS |
[34] S. Nosé, J. Chem. Phys. 1984, 81, 511.
| Crossref | GoogleScholarGoogle Scholar |
[35] S. Carter, A. R. Sharma, J. M. Bowman, J. Chem. Phys. 2012, 137, 154301.
| Crossref | GoogleScholarGoogle Scholar | 23083159PubMed |
[36] S. Manzhos, T. Carrington, J. Chem. Phys. 2006, 125, 084109.
| Crossref | GoogleScholarGoogle Scholar | 16965003PubMed |
[37] S. Manzhos, MRS Commun. 2013, 3, 37.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXksFWgtrs%3D&md5=d279bb204edf4ad61ac26b1c5e4db136CAS |
[38] S. B. Rempe, T. R. Mattsson, K. Leung, Phys. Chem. Chem. Phys. 2008, 10, 4685.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXpsVChtrc%3D&md5=3e3875e890f00ddf45830bceaf1fe13fCAS | 18688510PubMed |
[39] H. Xiao, J. Tahir-Kheli, W. A. Goddard, J. Phys. Chem. Lett. 2011, 2, 212.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXmslCrsg%3D%3D&md5=d07c6f3137d45b67749f5bc6e0afd9fdCAS |
[40] T. Daeneke, A. J. Mozer, Y. Uemura, S. Makuta, M. Fekete, Y. Tachibana, N. Koumura, U. Bach, L. Spicca, J. Am. Chem. Soc. 2012, 134, 16925.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XhsVWmsLfN&md5=ebb8aa0f674c244a0fefc567315b7c4bCAS | 23013038PubMed |