A Much-Needed Mechanism and Reaction Rate for the Oxidation of Phenols with ClO2: A Joint Experimental and Computational Study
Carlos Alberto Huerta Aguilar A , Jayanthi Narayanan B , Mariappan Manoharan C , Narinder Singh D E and Pandiyan Thangarasu A EA Facultad de Química, Universidad Nacional Autónoma de México (UNAM), Ciudad Universitaria, Coyoacán, 04510 México D.F., México.
B División de Nanotecnología, Universidad Politécnica del Valle de México, Av. Mexiquense, C.P. 54910 Tultitlan, Estado de México, México.
C School of Science, Engineering and Mathematics, Bethune-Cookman University, Daytona Beach, Florida 32114, USA.
D Department of Chemistry, Indian Institute of Technology Ropar, Rupnagar, Panjab 140001, India.
E Corresponding authors. Email: nsingh@iitpr.ac.in; pandiyan@servidor.unam.mx
Australian Journal of Chemistry 66(7) 814-824 https://doi.org/10.1071/CH13101
Submitted: 16 January 2013 Accepted: 5 April 2013 Published: 26 April 2013
Abstract
The oxidation of phenols with chlorine dioxide, a powerful means to eliminate phenol pollutants from drinking water, is explored. Kinetic experiments reveal that 2,4,6-trichlorophenol exhibits a lower oxidation rate than other phenols because the chlorine atoms (σ = 0.22) at ortho and para-positions decrease the benzene’s electron density, in agreement with the Hammett plot. The oxidation of phenol was found to be second order with respect to phenol and first order with respect to ClO2 and a possible mechanism is proposed. The phenol/ClO2 oxidation was found to be pH-dependent since the reaction rate constant increases with increasing pH. The oxidation rate was also significantly enhanced with an increasing methanol ratio in water. The oxidation products, such as benzoquinones, were analysed and confirmed by liquid chromatography and gas chromatography–mass spectrometry. Density functional theory computations at both the B3LYP/6-311+G(d,p) and M06-2X.6-311+G(d,p) levels with the SCRF-PCM solvation model (i.e. with water) further supported the proposed mechanisms in which activation barriers predicted the right reactivity trend as shown by the kinetic experiments.
References
[1] R. S. Cohen, Preparation of Chlorinated Hydroxy Compounds, U.S. Patent 3 481 991 1969.[2] E. C. Britton, F. N. Alquist, M. Mich, Preparation of Pentachlorophenol, U.S. Patent 2 176 417 1939.
[3] R. E. Buckles, S. Wawzonek, J. Chem. Educ. 1948, 25, 514.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaH1cXktFOrsA%3D%3D&md5=34a5dd18b07c6e9ede7b8f27fc7498cbCAS |
[4] A. Galat, J. Am. Chem. Soc. 1952, 74, 3890.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaG3sXjsVyrug%3D%3D&md5=47c6fdcbc211addb3c7a7eaba5472e61CAS |
[5] M. Z. Alam, S. A. Muyibi, M. F. Mansor, R. Wahid, J. Environ. Sci. (China) 2006, 18, 446.
| 1:CAS:528:DC%2BD28XmsVGht7c%3D&md5=d1a31f65e9967a321092123ee03b8d00CAS |
[6] R. M. Liou, S. H. Chen, M. Y. Hung, C. S. Hsu, J. Y. Lai, Chemosphere 2005, 59, 117.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXhtVKju7k%3D&md5=5051830cafc71810edd168d0cd2e52c5CAS | 15698652PubMed |
[7] X. Qu, J. Zheng, Y. Zhang, J. Colloid Interface Sci. 2007, 309, 429.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXktFOks7Y%3D&md5=d0d1dc491a49b7ccba9a6a26a704bad6CAS | 17336995PubMed |
[8] C. F. Yang, Q. A. Yu, L. J. Zhang, J. Z. Feng, Chem. Eng. J. 2006, 117, 179.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28Xhsl2ju7s%3D&md5=a890ac9eba745a1f6f001a845f5d0a50CAS |
[9] M. Ahmaruzzaman, D. K. Sharma, J. Colloid Interface Sci. 2005, 287, 14.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXksVyqsL0%3D&md5=bc873033bbd09557e5dd5c52c57d5673CAS | 15914144PubMed |
[10] I. B. S. Will, J. E. F. Moraes, A. Teixeira, R. Guardani, C. A. O. Nascimento, Separ. Purif. Technol. 2004, 34, 51.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXislagtA%3D%3D&md5=2966a2ce3ded77a5bbe802501dc11636CAS |
[11] M. Tomaszewska, S. Mozia, A. W. Morawski, Desalination 2004, 161, 79.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXhvVGlt7k%3D&md5=128ebb52c6edb5ffad754fdf2ce4a0c0CAS |
[12] G. Tziotzios, M. Teliou, V. Kaltsouni, G. Lyberatos, D. V. Vayenas, Biochem. Eng. J. 2005, 26, 65.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXpslylsLo%3D&md5=a722b235e831f3a212060c8a618222c2CAS |
[13] S. Sorlini, C. Collivignarelli, Desalination 2005, 176, 103.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXntVart74%3D&md5=fdf4e41e7fc793d3dfff61a403802db7CAS |
[14] C. Ravacha, A. Serri, E. G. Choshen, B. Limoni, Water Sci. Technol. 1985, 17, 611.
| 1:CAS:528:DyaL2MXltV2luro%3D&md5=a50ad48a23b47552f93118200573871eCAS |
[15] B. Limoni, B. Teltsch, Water Res. 1985, 19, 1489.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL28Xls1Srtg%3D%3D&md5=9497d593b46ed5b9fcde920845ea5a41CAS |
[16] J. E. Wajon, D. H. Rosenblatt, E. P. Burrows, Environ. Sci. Technol. 1982, 16, 396.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL38XksFGjtr4%3D&md5=b6b3f6822bc2aa340a39e2757f097abcCAS | 22276755PubMed |
[17] J. F. Wallwork, R. T. Heslop, N. L. Redshaw, Prog. Water Technol. 1978, 9, 215.
[18] G. Hua, D. A. Reckhow, Water Res. 2007, 41, 1667.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXjtlyqs7g%3D&md5=abe2df6d668bc5e2987c4dfd54bc6501CAS | 17360020PubMed |
[19] S. Navalon, M. Alvaro, H. Garcia, Water Res. 2008, 42, 1935.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXkvVCit74%3D&md5=f3808826dab6214ea25325776f53a9fcCAS | 18093633PubMed |
[20] M. A. Benarde, B. M. Israel, V. P. Olivieri, M. Granstro, Appl. Microbiol. 1965, 13, 776.
| 1:CAS:528:DyaF2MXksFOqsLo%3D&md5=18d65f692d1262f16a53b79974476095CAS | 5325940PubMed |
[21] Q. S. Sussman, U. Ward, in Engineering Aspects of Chlorine Dioxide. Proceedings of a Seminar on Control of Organic Chemical Contamination in Drinking Water 1981 (EPA: Washington, DC).
[22] O. Ayyildiz, S. Sanik, B. Ileri, Ultrason. Sonochem. 2011, 18, 683.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXhtl2gur%2FP&md5=4f2db66381b60506a90408827b926defCAS | 20829088PubMed |
[23] H. Bergmann, S. Koparal, Electrochim. Acta 2005, 50, 5218.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXpsF2hsb8%3D&md5=467796e123d1fed5c412abbbf02b3baeCAS |
[24] B. V. Pepich, T. A. Dattilio, P. S. Fair, D. J. Munch, G. Gordon, Z. Koertvelyesi, Anal. Chim. Acta 2007, 596, 37.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXnsVKlu7Y%3D&md5=b2d68aa06f22ac5da593fae75ff66544CAS | 17616237PubMed |
[25] Z. Zhang, J. E. Stout, V. L. Yu, R. Vidic, Water Res. 2008, 42, 129.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXhsVGlur7P&md5=29b8abad9d8ce5bc6ab634127faa193dCAS | 17884130PubMed |
[26] R.-y. Jin, S.-q. Hu, Y.-g. Zhang, T. Bo, J. Hazard. Mater. 2009, 166, 842.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXlvFKisLc%3D&md5=c97d11355c15b5367830b6fbf7782c38CAS | 19155128PubMed |
[27] H.-L. Wang, J. Dong, W.-F. Jiang, J. Hazard. Mater. 2010, 183, 347.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXhtFChtrzF&md5=1e1f0391ad4ea45d0ba00f3bb92941a3CAS | 20685038PubMed |
[28] E. Rodriguez, G. D. Onstad, T. P. J. Kull, J. S. Metcalf, J. L. Acero, U. von Gunten, Water Res. 2007, 41, 3381.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXns1Kiurk%3D&md5=19180687ca82fcd3299a2bcb052aab09CAS | 17583762PubMed |
[29] G. Petrucci, M. Rosellini, Desalination 2005, 182, 283.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXhtFOhtr3F&md5=c1539260e9f85f6184440c7fd150581cCAS |
[30] G. M. Abushakhmina, A. F. Khalizov, S. S. Zlotskii, V. V. Shereshovets, U. B. Imashev, React. Kinet. Catal. Lett. 2000, 70, 177.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3cXnvFWjsb0%3D&md5=05a6333829bb2c3fbccff351678c3b90CAS |
[31] P. Wang, Y.-L. He, C.-H. Huang, Water Res. 2011, 45, 1838.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXmtFegtg%3D%3D&md5=d33562d54e621c8b86f278f5ee597cb4CAS | 21168893PubMed |
[32] I. V. Loginova, K. S. Rodygin, S. A. Rubtsova, P. A. Slepukhin, A. V. Kuchin, V. A. Polukeev, Russ. J. Org. Chem. 2011, 47, 124.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXitFSisrc%3D&md5=7daf22a33ddac90ca0e3a9b6a23772e2CAS |
[33] X. Cao, J. Huang, C. Cui, S. Li, J. Soc. Leather Technol. Chem. 2007, 91, 145.
| 1:CAS:528:DC%2BD2sXhtVeis7zK&md5=2156d9af56cf142611635d448f918620CAS |
[34] M. M. Huber, S. Korhonen, T. A. Ternes, U. von Gunten, Water Res. 2005, 39, 3607.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXpvVSltLk%3D&md5=17948366071310404f3a4e7c91332061CAS | 16061268PubMed |
[35] V. K. Sharma, Chemosphere 2008, 73, 1379.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXhtlSgsLzL&md5=a27fdb41b595db6fb1bc718287e31fcdCAS | 18849059PubMed |
[36] I. Vandekinderen, F. Devlieghere, J. Van Camp, B. Kerkaert, T. Cucu, P. Ragaert, J. De Bruyne, B. De Meulenaer, Int. J. Food Microbiol. 2009, 131, 138.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXkslygtLo%3D&md5=e42dbb093080bb1ae110f23f376a1a45CAS | 19254814PubMed |
[37] A. Ter Beek, L. M. Hornstra, R. Pandey, W. W. Kallemeijn, J. P. P. M. Smelt, E. M. M. Manders, S. Brul, Food Microbiol. 2011, 28, 678.
| Crossref | GoogleScholarGoogle Scholar | 21511127PubMed |
[38] J. P. Vicuna-Reyes, J. Luh, B. J. Marinas, Water Res. 2008, 42, 1531.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXjt12nsrY%3D&md5=24391583aa960498aeac12074be855eeCAS | 18023466PubMed |
[39] O. A. Ali, S. J. Tarek, Desalination Water Treat. 2009, 1, 289.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXmt1ahsbc%3D&md5=5aca70d2b789a877a055c7df9dc9c5c1CAS |
[40] P. Kumar, H. Nikakhtari, M. Nemati, G. Hill, J. Headley, J. Chem. Technol. Biotechnol. 2010, 85, 720.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXkslOls7c%3D&md5=220bd37b43abc6e96c7923d464fc98daCAS |
[41] L. Shi, N. Li, C. Wang, C. Wang, J. Hazard. Mater. 2010, 178, 1137.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXksV2qtbo%3D&md5=99a3d032f26e6c504d8078e5e82e904eCAS | 20149526PubMed |
[42] A. V. Kuchin, S. A. Rubtsova, L. P. Karmanova, S. N. Subbotina, I. V. Loginova, Russ. Chem. Bull. 1998, 47, 2051.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1MXmsF2qtw%3D%3D&md5=6b00dd44a4d6b8610ab341b9248d4af7CAS |
[43] A. V. Kuchin, S. A. Rubtsova, I. V. Loginova, S. N. Subbotina, Russ. J. Org. Chem. 2000, 36, 1819.
| 1:CAS:528:DC%2BD3MXktVWjtrc%3D&md5=adb514155d97181b37b71d5bacb8f3d9CAS |
[44] A. K. Horvath, I. Nagypal, J. Phys. Chem. A 1998, 102, 7267.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1cXlsVeluro%3D&md5=b539757138bff5d1ffe86f2f51198764CAS |
[45] C. K. Chen, A. G. Hortmann, M. R. Marzabadi, J. Am. Chem. Soc. 1988, 110, 4829.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL1cXksFGjsLY%3D&md5=8f203fef8fbbf4c43a216695a41aa7b9CAS |
[46] P. Wang, Y.-L. He, C.-H. Huang, Water Res. 2010, 44, 5989.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXhsVCmtr3P&md5=406b119767e643142df460d72e8f1c2bCAS | 20708211PubMed |
[47] Y. Lee, U. von Gunten, Water Res. 2010, 44, 555.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXhvFegs7s%3D&md5=956317f288410e1f6a920ec00d82353dCAS | 20015530PubMed |
[48] F. Tian, Z. Qiang, C. Liu, T. Zhang, B. Dong, Chemosphere 2010, 79, 646.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXjvFKktrg%3D&md5=033ea28ff63a38abac2ae18252b28f74CAS | 20189628PubMed |
[49] B. R. Deshwal, H. K. Lee, J. Ind. Eng. Chem. 2005, 11, 125.
| 1:CAS:528:DC%2BD2MXhtVSgsbk%3D&md5=03bb188b578c0b4cf222bbdbd9129cfeCAS |
[50] B. R. Deshwal, H. D. Jo, H. K. Lee, Can. J. Chem. Eng. 2004, 82, 619.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXjtVCrtQ%3D%3D&md5=417fde50adfd6c15c2011443c198cf02CAS |
[51] T. F. Tang, G. Gordon, Environ. Sci. Technol. 1984, 18, 212.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL2cXnsVOjsw%3D%3D&md5=f5bca93c6b5ddc42caa277e8d7a45802CAS |
[52] J. F. White, M. C. Taylor, G. P. Vincent, Ind. Eng. Chem. 1942, 34, 782.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaH38Xjt12nsg%3D%3D&md5=4c26de6f8c77341ceb52f89bf25cd791CAS |
[53] J. Tenney, M. Shoaei, T. Obijeski, W. R. Ernst, R. Lindstroem, B. Sundblad, J. Wanngard, Ind. Eng. Chem. Res. 1990, 29, 912.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK3cXitVWmurY%3D&md5=0b3a740685a759be388e22ebb96e7388CAS |
[54] M. Burke, J. Tenney, B. Indu, M. F. Hoq, S. Carr, W. R. Ernst, Ind. Eng. Chem. Res. 1993, 32, 1449.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK3sXktlWjs7g%3D&md5=308a154051b93b1ca0fd8be73cfce4daCAS |
[55] B. R. Deshwal, H. K. Lee, J. Hazard. Mater. 2004, 108, 173.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXjsFOlu7k%3D&md5=06eb7f7a789486a2b1beac5a2b5b567cCAS | 15120870PubMed |
[56] J. Hoigne, H. Bader, Water Res. 1994, 28, 45.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2cXjslOitA%3D%3D&md5=ca38249bc15af0cd6559d9dd55813901CAS |
[57] M. J. Napolitano, D. J. Stewart, D. W. Margerum, Chem. Res. Toxicol. 2006, 19, 1451.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XhtFert7zK&md5=0444a2214a50ded7dd10398dd75eba0aCAS | 17112232PubMed |
[58] D. J. Stewart, M. J. Napolitano, E. V. Bakhmutova-Albert, D. W. Margerum, Inorg. Chem. 2008, 47, 1639.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXhs1emtb8%3D&md5=0b127711f1d7ab846a17058fdb9e488fCAS | 18254588PubMed |
[59] C. Lee, C. Schmidt, J. Yoon, U. von Gunten, Environ. Sci. Technol. 2007, 41, 2056.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXhsFOkt7g%3D&md5=70ae8c5cc86e260d9e94190b3c254748CAS | 17410805PubMed |
[60] M. Gattrell, D. W. Kirk, J. Electrochem. Soc. 1993, 140, 1534.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK3sXls12is7k%3D&md5=4660e545ee152a910fe22bfe936d4671CAS |
[61] F. Trabelsi, H. Ait-Lyazidi, B. Ratsimba, A. M. Wilhelm, H. Delmas, P. L. Fabre, J. Berlan, Chem. Eng. Sci. 1996, 51, 1857.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK28Xjt1Olsbg%3D&md5=8babd1c06e4c3395300e23ee3c5f64f2CAS |
[62] C. Minero, E. Pelizzetti, P. Pichat, M. Sega, M. Vincenti, Environ. Sci. Technol. 1995, 29, 2226.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2MXntFCjur4%3D&md5=f632f27143d23b83c74818bc9e610a60CAS | 22280260PubMed |
[63] I. M. Ganiev, E. S. Suvorkina, N. N. Kabal’nova, Russ. Chem. Bull. 2003, 52, 1123.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXlsVarsLc%3D&md5=34507b8dabfe346faa2bfa9762cc5b12CAS |
[64] I. M. Ganiev, K. K. Timergazin, V. V. Shereshovets, I. A. Grigor’ev, G. A. Tolstikov, Russ. Chem. Bull. 2001, 50, 614.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3MXmtFegsr0%3D&md5=c7ef74706a7675e0b2e8e38dc8e89203CAS |
[65] A. D. Becke, J. Chem. Phys. 1993, 98, 5648.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK3sXisVWgtrw%3D&md5=f6cf3fb1eb0aa0bd90e09e70f7fe63aeCAS |
[66] A. D. Becke, Phys. Rev. A 1988, 38, 3098.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL1cXmtlOhsLo%3D&md5=2a3bc3989fac96c88d548336c5199bd8CAS | 9900728PubMed |
[67] C. T. Lee, W. T. Yang, R. G. Parr, Phys. Rev. B 1988, 37, 785.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL1cXktFWrtbw%3D&md5=5be02d73b432a9ccf155dbb749241880CAS |
[68] K. Nakata, M. Fujio, K. Nishimoto, Y. Tsuno, J. Phys. Org. Chem. 2013, 26, 115.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XmsFCls7Y%3D&md5=cc5a8c93e05285ede02d611ecb5fccc6CAS |
[69] Y. Sun, X. Ren, Z. Cui, G. Zhang, J. Mol. Model. 2012, 18, 3821.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XhtFSltrvL&md5=45eb1a057eebb1348d2d77821e44181aCAS |
[70] P. Wu, J. Li, S. Li, F.-M. Tao, Sci. China Chem. 2012, 55, 270.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XhtFWruro%3D&md5=52b27d12ff4627dadaf863c498e10d31CAS |
[71] P. I. Nagy, J. Phys. Chem. A 2012, 116, 7726.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XptF2isbk%3D&md5=909d513fd828999c339a3db9a5440127CAS | 22731938PubMed |
[72] W. J. Hehre, L. Radom, P. R. Schleyer, J. A. Pople, Ab Inito Molecular Orbital Theory 1986 (John Wiley and Sons: New York, NY).
[73] M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, B. Mennucci, G. A. Petersson, H. Nakatsuji, M. Caricato, X. Li, H. P. Hratchian, A. F. Izmaylov, J. Bloino, G. Zheng, J. L. Sonnenberg, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, J. A. Montgomery, Jr, J. E. Peralta, F. Ogliaro, M. Bearpark, J. J. Heyd, E. Brothers, K. N. Kudin, V. N. Staroverov, R. Kobayashi, J. Normand, K. Raghavachari, A. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, N. Rega, J. M. Millam, M. Klene, J. E. Knox, J. B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R. E. Stratmann, O. Yazyev, A. J. Austin, R. Cammi, C. Pomelli, J. W. Ochterski, R. L. Martin, K. Morokuma, V. G. Zakrzewski, G. A. Voth, P. Salvador, J. J. Dannenberg, S. Dapprich, A. D. Daniels, Ö. Farkas, J. B. Foresman, J. V. Ortiz, J. Cioslowski, D. J. Fox, Gaussian 09 2004 (Gaussian Inc.: Wallingford, CT).
[74] Z. F. Xu, M. C. Lin, J. Phys. Chem. A 2005, 109, 9054.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXhtVShsLzL&md5=f451fae9b2b43fd21776634f8be7ba9dCAS | 16332011PubMed |
[75] Y. M. Choi, J. Park, M. C. Lin, J. Phys. Chem. A 2003, 107, 7755.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXmvFegsrw%3D&md5=407034cfe864fb48e3e09c61ecceef06CAS |
[76] I. V. Tokmakov, M. C. Lin, J. Phys. Chem. A 2002, 106, 11309.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38XotFSrtLw%3D&md5=c6a2801038a6fed27c4a52f936256745CAS |
[77] J. Cerkovnik, E. Erzen, J. Koller, B. Plesnicar, J. Am. Chem. Soc. 2002, 124, 404.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3MXptlClurs%3D&md5=230402c455725dc02d1fe1e3a13fa1abCAS | 11792209PubMed |
[78] K. Gilmore, M. Manoharan, J. I. C. Wu, P. R. Schleyer, I. V. Alabugin, J. Am. Chem. Soc. 2012, 134, 10584.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38Xnt1Wqsrw%3D&md5=d75c7a0b3f66977c2d2154fdcc12fc80CAS | 22594586PubMed |
[79] I. V. Alabugin, K. Gilmore, M. Manoharan, J. Am. Chem. Soc. 2011, 133, 12608.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXptlSksrg%3D&md5=cbae78a7c13377893b696d4ab28db1ffCAS | 21675773PubMed |
[80] Y. Zhao, D. G. Truhlar, J. Phys. Chem. A 2008, 112, 1095.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXos1ajsg%3D%3D&md5=ea1035208438038897231315b5e0d2d3CAS | 18211046PubMed |
[81] M. D. Wodrich, C. Corminboeuf, P. R. Schreiner, A. A. Fokin, P. R. Schleyer, Org. Lett. 2007, 9, 1851.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXjvFKntb4%3D&md5=e7344debcb41ca834eea260a638cda84CAS | 17417862PubMed |
[82] E. I. Izgorodina, D. R. B. Brittain, J. L. Hodgson, E. H. Krenske, C. Y. Lin, M. Namazian, J. Phys. Chem. A 2007, 111, 10754.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXhtVKmsb3L&md5=cde0ce79fe3590645d2ebc8dbe41db54CAS | 17887739PubMed |
[83] K. S. Khuong, W. H. Jones, W. A. Pryor, K. N. Houk, J. Am. Chem. Soc. 2005, 127, 1265.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXkvF2m&md5=b36fdb268c95dcc0c2771fe1936156a1CAS | 15669866PubMed |
[84] Y. Zhao, D. G. Truhlar, J. Phys. Chem. A 2006, 110, 13126.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28Xht1SqtLfM&md5=ec765255fbc9481d655ad6ef80635cafCAS | 17149824PubMed |
[85] Y. Zhao, D. G. Truhlar, J. Chem. Phys. 2006, 125, 194101.
| 17129083PubMed |
[86] Y. Zhao, D. G. Truhlar, Theor. Chem. Acc. 2008, 120, 215.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXltFyltbY%3D&md5=20a8799ec44c7ce60eef088008c1bc09CAS |