Free Standard AU & NZ Shipping For All Book Orders Over $80!
Register      Login
Australian Journal of Chemistry Australian Journal of Chemistry Society
An international journal for chemical science
RESEARCH ARTICLE

Formation of Dynamic Duolayer Systems at the Air/Water Interface by using Non-ionic Hydrophilic Polymers

Emma L. Prime A , Diana N.H. Tran A , Andy H.M Leung A , Devi Sunartio A , Greg G. Qiao A B and David H. Solomon A B
+ Author Affiliations
- Author Affiliations

A Department of Chemical & Biomolecular Engineering, The University of Melbourne, Parkville, Vic. 3010, Australia.

B Corresponding authors. Email: gregghq@unimelb.edu.au; davids@unimelb.edu.au

Australian Journal of Chemistry 66(7) 807-813 https://doi.org/10.1071/CH13094
Submitted: 31 August 2012  Accepted: 16 April 2013   Published: 5 June 2013

Abstract

The inclusion of a water-soluble polymer, poly(vinyl pyrrolidone) (PVP), into a surface active film composition before application to the water surface leads to the formation of a dynamic duolayer; a novel surface film system. This duolayer shows improved surface viscosity over the monolayer compound alone, while the addition of polymer maintains other film properties such as evaporation control and equilibrium spreading pressure. Brewster Angle Microscopy shows that the duolayer film undergoes a different formation mechanism upon film compression, and the resultant surface pressure/area isotherm is different at lower surface pressures indicating the PVP is present on the water surface at these pressures and squeezed out to the water subphase at higher pressures. The addition of water-soluble polymers to form a dynamic duolayer provides a unique way to produce defect-free and tightly packed films while polymer is associated with the film. This finding provides new knowledge for the design of surface films with improved properties with potential applications in many areas.


References

[1]  (a) A. Ambike, V. Rosilio, B. Stella, S. Lepetre-Mouelhi, P. Couvreur, Langmuir 2011, 27, 4891.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXjsVCqtr4%3D&md5=efebde31e9de9d257214afd5a1daea58CAS | 21413743PubMed |
      (b) S. Belem-Goncalves, G. Matar, P. Tsan, D. Lafont, P. Boullanger, V. M. Salim, T. L.M. Alves, J.-M. Lancelin, F. Besson, Colloids Surf., B 2010, 75, 466.
         | Crossref | GoogleScholarGoogle Scholar |
      (c) S. Y. Choi, S. G. Oh, J. S. Lee, Colloids Surf., B 2001, 20, 239.
         | Crossref | GoogleScholarGoogle Scholar |
      (d) A. P. Girard-Egrot, C. A. Marquette, L. l. J. Blum, Int. J. Nanotech. 2010, 7, 753.
         | Crossref | GoogleScholarGoogle Scholar |

[2]  (a) E. K. Rideal, J. Phys. Chem. 1925, 29, 1585.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaB28XmvFGg&md5=87ab2f72cc509da9d332144949b5b904CAS |
      (b) V. K. La Mer, T. W. Healy, Science 1965, 148, 36.
         | Crossref | GoogleScholarGoogle Scholar |
      (c) E. L. Prime, D. J. Henry, I. Yarovsky, G. G. Qiao, D. H. Solomon, Colloids Surf., A. 2011, 384, 482.
         | Crossref | GoogleScholarGoogle Scholar |
      (d) E. L. Prime, D. N. H. Tran, M. Plazzer, D. Sunartio, A. H. M. Leung, G. Yiapanis, S. Baoukina, I. Yarovsky, G. G. Qiao, D. H. Solomon, Colloids Surf., A. 2012, 415, 47.
         | Crossref | GoogleScholarGoogle Scholar |

[3]  (a) K. B. Blodgett, I. Langmuir, Phys. Rev. 1937, 51, 964.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaA2sXls1Snuw%3D%3D&md5=12db4270687152b1266b685f6ac76246CAS |
      (b) J. J. Ramsden, Supramol. Chem.: Mol. Nanomater. 2012, 2, 529.
      (c) D. R. Talham, T. Yamamoto, M. W. Meisel, J. Phys.: Condens. Matter 2008, 20, 184006.
         | Crossref | GoogleScholarGoogle Scholar |

[4]  (a) M. Weck, R. Fink, H. Ringsdorf, Langmuir 1997, 13, 3515.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2sXjslaisLY%3D&md5=cabccd5fca54bfe73f4a46748255d0e1CAS |
      (b) S. Q. Choi, T. M. Squires, Physics 2009, arXiv:0910.3280 [physics.flu-dyn].

[5]  G. T. Barnes, Agr. Water Manage. 2008, 95, 339.
         | Crossref | GoogleScholarGoogle Scholar |

[6]  (a) C. Alonso, J. A. Zasadzinski, J. Phys. Chem. B. 2006, 110, 22185.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28Xhs1Cjuro%3D&md5=15c0d7fa0e87a4f4afa4244aebddf42aCAS | 17078656PubMed |
      (b) G. T. Gavranovic, M. M. Smith, W. Jeong, A. Y. Wong, R. M. Waymouth, G. G. Fuller, J. Phys. Chem. B. 2006, 110, 22285.
         | Crossref | GoogleScholarGoogle Scholar |
      (c) A. Gericke, J. Simon-Kutscher, H. Huehnerfuss, Langmuir 1993, 9, 2119.
         | Crossref | GoogleScholarGoogle Scholar |

[7]  C. J. Drummond, P. Elliott, D. N. Furlong, G. T. Barnes, J. Colloid Interface Sci. 1992, 151, 189.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK38Xis1aqt74%3D&md5=34137c675e6700216b9ed0390250c7aeCAS |

[8]  K. Ariga, J. P. Hill, Chem. Rec. 2011, 11, 199.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXhtVSrtLfE&md5=df4dd12ca22a194c2480c1f23511e4e3CAS | 21739568PubMed |

[9]  K. Fukuda, T. Kato, S. Machida, Y. Shimizu, J. Colloid Interface Sci. 1979, 68, 82.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaE1MXmtFKnug%3D%3D&md5=120f92dd5701a6987b7f4bb493ab4a17CAS |

[10]  C. E. McNamee, G. T. Barnes, I. R. Gentle, J. B. Peng, R. Steitz, R. Probert, J. Colloid Interface Sci. 1998, 207, 258.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1cXnslagsro%3D&md5=a965caea95aae7482aea331891676f0dCAS | 9792768PubMed |

[11]  J. Li, V. Janout, S. L. Regen, Chem. Mater. 2006, 18, 5065.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XpvVSmtr8%3D&md5=b3838cf6696dacbdac53319d229f17e7CAS |

[12]  W. Yan, J. Qingzhu, W. Bingwen, Z. Wei, Y. Shouzhi, Russ. Chem. Bull. 2010, 59, 1686.
         | Crossref | GoogleScholarGoogle Scholar |

[13]  G. T. Barnes, J. Hydrol. 1993, 145, 165.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK3sXlsVKjtrY%3D&md5=17c68e3fa8d937128f580bb2ab338a66CAS |

[14]  K. Ariga, J. S. Shin, T. Kunitake, J. Colloid Interface Sci. 1995, 170, 440.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2MXksVKhtbY%3D&md5=548533031e5336504f8044d5714746fdCAS |

[15]  I. Langmuir, V. J. Schaefer, J. Franklin Inst. 1943, 235, 119.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaH3sXhtlyntQ%3D%3D&md5=76e36f5c0f6facca26a3391152a9b0d6CAS |

[16]  L. Gargallo, A. Leiva, L. Alegria, B. Miranda, A. Gonzalez, D. Radic, 2004, B43, 913.
         | 1:CAS:528:DC%2BD2cXntF2mtrw%3D&md5=f5776e38beed646481d288bf5b247007CAS |

[17]  (a) B. Kanner, J. E. Glass, Ind. Eng. Chem. 1969, 61, 31.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaF1MXktlWks70%3D&md5=e8118df3f694eb4e38327e1a14f2bbc6CAS |
      (b) M. D. Conner, V. Janout, I. Kudelka, P. Dedek, J. Zhu, S. L. Regen, Langmuir 1993, 9, 2389.
         | Crossref | GoogleScholarGoogle Scholar |