Flow Chemistry: An Enabling Tool for Chemical Synthesis and Manufacture
Anastasios (Tash) PolyzosCSIRO Materials Science and Engineering, Clayton, Vic. 3168, Australia. Email: tash.polyzos@csiro.au
Dr Anastasios (Tash) Polyzos was awarded his Ph.D. in physical organic chemistry in 2005 from La Trobe University (Melbourne, Australia), under the supervision of Associate Professor Andrew B. Hughes. In the same year, he was appointed as Research Fellow at the Commonwealth Scientific and Industrial Research Organisation, CSIRO (Materials Science and Engineering), Australia’s national research agency. In 2008, he was appointed as Post-Doctoral Research Associate at University of Cambridge under the guidance of Professor Steven V. Ley, FRS, investigating the synthesis of advanced products using multi-step flow chemistry methods. In 2011, he returned to CSIRO Materials Science and Engineering as Research Scientist, where he played a key role in establishing CSIRO’s flow chemistry capability. Tash was also appointed Fellow at the University of Melbourne in 2011. His current research interests include the development of new methods and enabling technologies for the synthesis of complex organic products; in particular, the development of automated multi-step processes, catalysis and reaction discovery. |
Australian Journal of Chemistry 66(2) 119-120 https://doi.org/10.1071/CH13039
Published: 13 February 2013
References
[1] A. Kirschning, W. Solodenko, K. Mennecke, Chem. – Eur. J. 2006, 12, 5972.| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28Xot12ntbc%3D&md5=91f42055e0c8aaf8ffe4d9d4b21e957dCAS |
[2] D. L. Browne, M. Baumann, B. H. Harji, I. R. Baxendale, S. V. Ley, Org. Lett. 2011, 13, 3312.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXmslGms7g%3D&md5=20e4340c61c1a3b3b4061e2afa2c738bCAS |
[3] B. Shen, T. F. Jamison, Aust. J. Chem. 2013, 66, 157.
| Crossref | GoogleScholarGoogle Scholar |
[4] F. R. Bou-Hamdan, K. Krüger, K. Tauer, D. T. McQuade, P. H. Seeberger, Aust. J. Chem. 2013, 66, 213.
| Crossref | GoogleScholarGoogle Scholar |
[5] M. York, A. Edenharter, Aust. J. Chem. 2013, 66, 172.
| Crossref | GoogleScholarGoogle Scholar |
[6] Y. Nakano, G. P. Savage, S. Saubern, P. J. Scammells, A. Polyzos, Aust. J. Chem. 2013, 66, 178.
| Crossref | GoogleScholarGoogle Scholar |
[7] I. R. Baxendale, C. Hornung, S. V. Ley, J. de Mata Muñoz Molina, A. Wikström, Aust. J. Chem. 2013, 66, 131.
| Crossref | GoogleScholarGoogle Scholar |
[8] G. Chaplain, S. J. Haswell, P. D. I. Fletcher, S. M. Kelly, A. Mansfield, Aust. J. Chem. 2013, 66, 208.
| Crossref | GoogleScholarGoogle Scholar |
[9] W. Solodenko, A. Doppiu, R. Frankfurter, C. Vogt, A. Kirschning, Aust. J. Chem. 2013, 66, 183.
| Crossref | GoogleScholarGoogle Scholar |
[10] C. B. McPake, C. B. Murray, G. Sandford, Aust. J. Chem. 2013, 66, 145.
| Crossref | GoogleScholarGoogle Scholar |
[11] A. Nagaki, D. Yamada, S. Yamada, M. Doi, D. Ichinari, Y. Tomida, N. Takabayashi, J.-i. Yoshida, Aust. J. Chem. 2013, 66, 199.
| Crossref | GoogleScholarGoogle Scholar |
[12] J. W. Eschelbach, D. Wernick, M. C. Bryan, E. M. Doherty, Aust. J. Chem. 2013, 66, 165.
| Crossref | GoogleScholarGoogle Scholar |
[13] C. H. Hornung, X. Nguyen, S. Kyi, J. Chiefari, S. Saubern, Aust. J. Chem. 2013, 66, 192.
| Crossref | GoogleScholarGoogle Scholar |
[14] H. Seyler, S. Haid, T.-H. Kwon, D. J. Jones, P. Bäuerle, A. B. Holmes, W. W. H. Wong, Aust. J. Chem. 2013, 66, 151.
| Crossref | GoogleScholarGoogle Scholar |
[15] S. C. Stouten, T. Noël, Q. Wang, V. Hessel, Aust. J. Chem. 2013, 66, 121.
| Crossref | GoogleScholarGoogle Scholar |