Synthesis, Chemical Characterisation, and DNA Binding Studies of Ferrocene-Incorporated Selenoureas
Raja Azadar Hussain A , Amin Badshah A C , Muhammad Nawaz Tahir B , Bhajan Lal A and Inayat Ali Khan AA Coordination Chemistry Laboratory, Department of Chemistry, Quaid-i-Azam University, Islamabad 45320, Pakistan.
B Department of Physics, University of Sargodha, Punjab, Pakistan.
C Corresponding author. Email: aminbadshah@yahoo.com
Australian Journal of Chemistry 66(6) 626-634 https://doi.org/10.1071/CH12570
Submitted: 4 January 2013 Accepted: 5 February 2013 Published: 12 March 2013
Abstract
In this article we have presented the synthesis, chemical characterisation (by NMR and FTIR spectroscopy, atomic absorption spectrophotometry, elemental analysis, and single crystal X-ray diffraction), electrochemistry, and DNA binding studies (with cyclic voltammetry, viscometry, and UV-vis spectroscopy) of six new ferrocene incorporated selenoureas. All the six compounds interact electrostatically with DNA which was evident by a negative shift in the cyclic voltammetry peak potential of the drug–DNA adduct relative to the free drug. The drug–DNA binding constant was calculated by a decrease in peak current after the addition of DNA to the free drug. We have also reported binding site sizes and diffusion coefficients of the synthesised compounds.
References
[1] I. B. Douglass, J. Am. Chem. Soc. 1937, 59, 740.| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaA2sXislyrug%3D%3D&md5=ec74af814a3ab963c6eddc8c4df78ca6CAS |
[2] H. G. Mautner, J. Am. Chem. Soc. 1956, 78, 5292.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaG2sXht12ksw%3D%3D&md5=6319c8f26c5b15b052b4d2698fc42a7dCAS |
[3] K. Schwarz, C. M. Foltz, J. Am. Chem. Soc. 1957, 79, 3292.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaG2sXnslOmsg%3D%3D&md5=dc3c57406bbaf322686161fbc0120d83CAS |
[4] D. L. Klayman, R. J. Shine, Chem. Commun. 1968, 137, 372.
| Crossref | GoogleScholarGoogle Scholar |
[5] J. R. Andreesen, L. Ljungdahl, J. Bacteriol. 1973, 116, 867.
| 1:CAS:528:DyaE2cXhtF2isQ%3D%3D&md5=2fcdedb6fc9f150b9713282eeda7310fCAS |
[6] D. C. Turner, T. C. Stadtman, Arch. Biochem. Biophys. 1973, 154, 366.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaE3sXotFenuw%3D%3D&md5=3cfb92729a5872fd5415b03ce9a1aec9CAS |
[7] A. Böck, Selenium Proteins Containing Selenocysteine, in Encyclopedia of Inorganic Chemistry (Ed. R. B. King) 1994, Vol. 8, p. 3700 (John Wiley & Sons: Chichester).
[8] Y. Zhou, K. M. Denk, Tetrahedron Lett. 2003, 44, 1295.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXptFSrtA%3D%3D&md5=7063fb97908553f2de63db589907aac7CAS |
[9] H. Hope, Acta Chem. Scand. 1964, 18, 1800.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaF2MXptVaisQ%3D%3D&md5=d48ec635a25776602f3edb65a30bd8a0CAS |
[10] A. Rosenbaum, J. Prakt. Chem. 1968, 37, 200.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaF1cXnslKntg%3D%3D&md5=f5a6b65b009498e60685f24e9a6f8f58CAS |
[11] W. H. Pan, J. P. Fackler, Inorg. Synth. 1985, 21, 6.
| Crossref | GoogleScholarGoogle Scholar |
[12] Y. Takikawa, H. Watanabe, R. Sasaki, K. Shimada, Bull. Chem. Soc. Jpn. 1994, 67, 876.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2cXktlGks7g%3D&md5=98e49108c38282ceeb5bef6b4003229dCAS |
[13] Y. H. Zhou, A. Linden, H. Heimgartner, Helv. Chim. Acta 2000, 83, 1576.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3cXltVaru7o%3D&md5=afc834e431f568b0e1b2debf0e47c4f8CAS |
[14] J. G. Fernandez-Bolanos, O. Lopez, V. Ulgar, I. Maya, J. Fuentes, Tetrahedron Lett. 2004, 45, 4081.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXjs1ersbg%3D&md5=2d1d0718e6d1c8f9bf7399b67ca1ea1bCAS |
[15] D. H. R. Barton, S. I. Parekh, M. Tajbakhsh, E. A. Theodorakis, C. L. Tse, Tetrahedron 1994, 50, 639.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2cXislSls7s%3D&md5=af43172b72a14b28e90a1866c1bd298fCAS |
[16] V. V. Sureshbabu, N. Narendra, G. Nagendra, J. Org. Chem. 2009, 74, 153.
| 1:CAS:528:DC%2BD1cXhsVKlu7bO&md5=f96ce8faf393ba85aa41d943f9e97797CAS |
[17] M. B. D. Andaloussi, F. Mohr, J. Organomet. Chem. 2010, 695, 1276.
| 1:CAS:528:DC%2BC3cXksVCrtrY%3D&md5=1af1821e928acc1bce8f3dfc05554d65CAS |
[18] C. T. Pedersen, Acta Chem. Scand. 1963, 17, 1459.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaF3sXks1yrsrY%3D&md5=89d67bb48334f4ced902a6ed627f5262CAS |
[19] H. Rheinboldt, H. V. de Campos, J. Am. Chem. Soc. 1950, 72, 2784.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaG3cXlt1WjsA%3D%3D&md5=a29926c07a656d39c79e7cb04a943020CAS |
[20] G. Mugesh, W. du Mont, H. Sies, Chem. Rev. 2001, 101, 2125.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3MXkt1ers7w%3D&md5=bbee1e6c141393991d273d17394733a4CAS |
[21] B. Lal, A. Badshah, A. A. Altaf, N. Khan, S. Ullah, Appl. Organomet. Chem. 2011, 25, 843.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXhs1OltbzN&md5=4e35cb4660a4da3cf7d9ae1e09985f15CAS |
[22] A. Shah, M. Zaheer, R. Qureshi, Z. Akhter, M. F. Nazar, Spectrochim. Acta A Mol. Biomol. Spectrosc. 2010, 75, 1082.
| Crossref | GoogleScholarGoogle Scholar |
[23] S. Mathur, S. Tabassum, Cent. Eur. J. Chem. 2006, 4, 502.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XptVKlsL4%3D&md5=d4fd475dd0432d4aab6cdf42ca26dfb2CAS |
[24] F. Asghar, A. Badshah, A. Shah, M. K. Rauf, M. I. Ali, M. N. Tahir, E. Nosheen, Z. Rehman, R. Qureshi, J. Organomet. Chem. 2012, 717, 1.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XhtlaksbzF&md5=9de9f94331f94d580ea293d60fc74398CAS |
[25] A. Shah, R. Qureshi, N. K. Janjua, S. Haque, S. Ahmad, Anal. Sci. 2008, 24, 1437.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXhsVWktLzM&md5=27511fdb1ed51d3d02b7b381dd4c1816CAS |
[26] M. G. Sheldrick, Siemens Analytical X-Ray Instruments, Inc. 1996, Madison, WI.
[27] Q. Feng, N. Q. Li, Y. Y. Jiang, Anal. Chim. Acta 1997, 344, 97.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2sXislylsrg%3D&md5=c23832b374da3f862f50f9d6a859eef0CAS |
[28] M. Aslanoglu, N. Oge, Turk. J. Chem 2005, 29, 477.
| 1:CAS:528:DC%2BD2MXhtleqtbzK&md5=7c77751ae278b711dc4acd9666528a4eCAS |
[29] M. Aslanoglu, G. Ayne, Anal. Bioanal. Chem. 2004, 380, 658.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXovV2msro%3D&md5=d85833f8b51f514ac7966eb559e6e730CAS |
[30] C. M. A. Brett, A. M. O. Brett, Electrochemistry Principles, Methods and Applications 1993 (Oxford University Press: Oxford).
[31] E. Palecek, M. Fojta, Anal. Chem. 2001, 73, 75A.
[32] N. Li, Y. Ma, C. Yang, L. Guo, X. Yan, Biophys. Chem. 2005, 116, 199.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXmt1ehsL4%3D&md5=c4016d5822aaff6a1de3e03dd73d80d3CAS |
[33] A. M. Oliveira-Brett, V. Diculescu, J. A. P. Piedade, Bioelectrochemistry 2002, 55, 61.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38Xls1entw%3D%3D&md5=d309321137e9ba78bbede4cb98c2b4caCAS |
[34] A. Cavazzoni, R. R. Alfieri, C. Carmi, Mol. Cancer Ther. 2008, 7, 361.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXitVShsr0%3D&md5=13ee4722cc9d7e0650e1fdcda70effe7CAS |
[35] A. A. Altaf, N. Khan, A. Badshah, B. Lal, S. Ullah, S. Anwar, M. Subhan, J. Pak. Chem. Soc. 2011, 33, 691.
| 1:CAS:528:DC%2BC38XjsVKqtr4%3D&md5=ca42a145af01080cf451780e2fd6e97cCAS |