Cytotoxicity In Vitro, Apoptosis, Cellular Uptake, Cell Cycle Distribution, Mitochondrial Membrane Potential Detection, DNA Binding, and Photocleavage of Ruthenium(ii) Complexes
Gan-Jian Lin A , Zheng-Zheng Li A , Jun-Hua Yao B , Hong-Liang Huang C D , Yang-Yin Xie A and Yun-Jun Liu A DA School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou, 510006, China.
B Instrument Analysis and Research Center, Sun Yat-Sen Uiversity, Guangzhou, 510275, China.
C School of Life Science and Biopharmaceutical, Guangdong Pharmaceutical University, Guangzhou, 510006, China.
D Corresponding authors. Email: hhongliang@163.com; lyjche@163.com
Australian Journal of Chemistry 66(5) 555-563 https://doi.org/10.1071/CH12564
Submitted: 7 November 2012 Accepted: 7 January 2013 Published: 5 February 2013
Abstract
Four new ruthenium(ii) complexes [Ru(bpy)2(NHPIP)](ClO4)2 (Ru-1), [Ru(phen)2(NHPIP)](ClO4)2 (Ru-2), [Ru(bpy)2(AHPIP)](ClO4)2 (Ru-3), and [Ru(phen)2(AHPIP)](ClO4)2 (Ru-4) (bpy = 2,2′-bipyridine; phen = 1,10-phenanthroline; NHPIP = 2-(3-nitro-4-hydroxylphenyl)imidazo[4,5-f][1,10]phenanthroline; AHPIP = 2-(3-amino-4-hydroxylphenyl)imidazo[4,5-f][1,10]phenanthroline) were synthesized and characterized by elemental analysis, electrospray mass spectrometry, and 1H NMR spectroscopy. The cytotoxicity in vitro of these complexes against BEL-7402, HeLa, MG-63, and MCF-7 cells was evaluated by the MTT (3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide) method. Ru-4 shows the highest cytotoxic activity towards the selected cell lines among the four complexes. The morphological apoptosis was assayed by an acridine orange/ethidium bromide staining method, and the percentages of necrotic and apoptotic cells were determined by flow cytometry. The cellular uptake and the cell cycle arrest in BEL-7402 cell was investigated. The results showed these complexes inhibit the proliferation of BEL-7402 cells at G0/G1 phase arrest. The detection of mitochondrial membrane potentials using the fluorescence probe JC-1 (5,5′,6,6′-tetrachloro-1,1′,3,3′-tetraethylbenzimidazolcarbocyanine iodide) exhibited that the mitochondrial membrane potentials decrease. Upon irradiation, these complexes can effectively cleave pBR322 DNA.
References
[1] K. E. Erkkila, D. T. Odom, J. K. Barton, Chem. Rev. 1999, 99, 2777.| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1MXksl2ls7w%3D&md5=18b3bd2a38c82f7aad7260a650e24f2bCAS |
[2] P. Bhattacharya, J. K. Barton, J. Am. Chem. Soc. 2001, 123, 8649.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3MXlvVOmu78%3D&md5=610d93094cdeda84a1b46954f7a53e26CAS |
[3] S. Delaney, J. Yoo, E. D. A. Stemp, J. K. Barton, Proc. Natl. Acad. Sci. USA 2004, 101, 10511.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXmtFWms70%3D&md5=67112f0438f460227232655047215b00CAS |
[4] B. H. Yun, J. O. Kim, B. N. Lee, P. Lincoln, N. Norden, J. M. Kim, S. K. Kim, J. Phys. Chem. B 2003, 107, 9858.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXmtl2ltr4%3D&md5=51f9263ea60e4d94ead31892c85c6077CAS |
[5] L. F. Tan, J. Liu, J. L. Shen, X. H. Liu, L. L. Zeng, L. H. Jin, Inorg. Chem. 2012, 51, 4417.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38Xkslalur4%3D&md5=15e5bf0403e71a82949e120d3e775ea6CAS |
[6] U. Schatzschneider, J. Niesel, I. Ott, R. Gust, H. Alborzinia, S. Wölfl, ChemMedChem 2008, 3, 1104.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXovFWgsbY%3D&md5=a79abdb9178d8a1494db952cf46e30e2CAS |
[7] D. D. Sun, Y. N. Liu, D. Liu, R. Zhang, X. C. Yang, J. Liu, Chem.–Eur. J. 2012, 18, 4285.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XivV2rs70%3D&md5=b409974e69c41ec81dddc3cb791349bcCAS |
[8] B. S. Howerton, D. K. Heidary, E. C. Glazer, J. Am. Chem. Soc. 2012, 134, 8324.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XmsFaktr0%3D&md5=624a9e2874c192760378a1902d42d3d2CAS |
[9] V. Rajendiran, M. Murali, E. Suresh, M. Palaniandavar, V. S. Periasamy, M. A. Akbarsha, Dalton Trans. 2008, 38, 2157.
| Crossref | GoogleScholarGoogle Scholar |
[10] Y. J. Liu, C. H. Zeng, Z. H. Liang, J. H. Yao, H. L. Huang, Z. Z. Li, F. H. Wu, Eur. J. Med. Chem. 2010, 45, 3087.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXmtF2jsb4%3D&md5=e4d8c0ff5f3c2f3166b7091f3105a9c5CAS |
[11] H. L. Huang, Z. Z. Li, Z. H. Liang, J. H. Yao, Y. J. Liu, Eur. J. Med. Chem. 2011, 46, 3282.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXnsVertbY%3D&md5=bdd1e7de4fdc4f2f1e51e70888950ebfCAS |
[12] Y. J. Liu, Z. H. Liang, Z. Z. Li, J. H. Yao, H. L. Huang, J. Organomet. Chem. 2011, 696, 2728.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXntFKisro%3D&md5=6e6b26d32f4e5a35e0c7e697c6aea94bCAS |
[13] Y. J. Liu, Z. Z. Li, Z. H. Liang, J. H. Yao, H. L. Huang, DNA Cell Biol. 2011, 30, 839.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXht1eqsrnM&md5=71eaa8b237c2ce66ae12e8b871a32ad3CAS |
[14] W. Paw, R. Eisenberg, Inorg. Chem. 1997, 36, 2287.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2sXivFSitL4%3D&md5=f4ad5bc53c962717a450d98d7f234ad0CAS |
[15] B. P. Sullivan, D. J. Salmon, T. J. Meyer, Inorg. Chem. 1978, 17, 3334.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaE1cXmtVyhtbw%3D&md5=657d4669f461b9f639416e1af476aa3dCAS |
[16] T. Mosmann, J. Immunol. Methods 1983, 65, 55.
| Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DyaL2c%2FovFSmtw%3D%3D&md5=e00a9d1451a99504ee1e2667a623d683CAS |
[17] Cells: A Laboratory Manual (Eds D. L. Spector, R. D. Goldman, L. A. Leinwand) 1998, Vol. 1, Ch. 15 (Cold Spring Harbour Laboratory Press: New York, NY).
[18] K. K. Lo, T. K. Lee, J. S. Lau, W. L. Poon, S. H. Cheng, Inorg. Chem. 2008, 47, 200.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXhsVSqsbvK&md5=cbd50bb071cec91f587a2a3917602166CAS |
[19] L. F. Tan, F. C. Song, X. Q. Zou, X. L. Ling, DNA Cell Biol. 2011, 30, 277.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXlsF2gurY%3D&md5=85814852a002293726059d24aa6092d1CAS |
[20] Q. F. Guo, S. H. Liu, Q. H. Liu, H. H. Xu, J. H. Zhao, H. F. Wu, X. Y. Li, J. W. Wang, DNA Cell Biol. 2012, 31, 1205.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XhtVShtr%2FL&md5=e01c8b463ef2bc3af228c639e721d57bCAS |
[21] J. A. Hickman, Cancer Metastasis Rev. 1992, 11, 121.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2cXl&md5=4e50528c6a9f5f0c58e56aba4f0cc296CAS |
[22] H. L. Huang, Z. Z. Li, Z. H. Liang, Y. J. Liu, Eur. J. Inorg. Chem. 2011, 36, 5538.
| Crossref | GoogleScholarGoogle Scholar |
[23] C. T. Poon, P. S. Chan, C. Man, F. L. Jiang, R. N. S. Wong, N. K. Mak, D. W. J. Kwong, S. W. Tsao, W. K. Wong, J. Inorg. Biochem. 2010, 104, 62.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXhsVKhurjK&md5=c9b2400621ea2a91bf05e8bdc7784f21CAS |
[24] O. Zava, S. M. Zakeeruddin, C. Danelon, H. Vogel, M. Grätzel, P. J. Dyson, ChemBioChem 2009, 10, 1796.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXoslOntr0%3D&md5=d7b14fe8c189bf0138f56e815a796f3bCAS |
[25] J. K. Barton, A. L. Raphael, J. Am. Chem. Soc. 1984, 106, 2466.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL2cXitVGrsb8%3D&md5=0439f7443c7d5778b57bb9136191518dCAS |