Efficient Synthesis of Novel Porphyrin Dimers with Versatile Linkers via Bis(dipyrromethanes) in an Excellent Mixed-Solvent
Hongbin Zhao A B C , Junxu Liao A , Deliang Yang A , Yujia Xie A B , Yongjun Xu A , Hongke Wang A and Bangying Wang A BA College of Chemistry and Environmental Engineering, Dongguan University of Technology, Guangdong 523808, China.
B College of Chemistry, Xiangtan University, Hunan 411105, China.
C Corresponding author. Email: zhaohbhanlf@163.com
Australian Journal of Chemistry 66(8) 972-982 https://doi.org/10.1071/CH12521
Submitted: 22 November 2012 Accepted: 2 May 2013 Published: 29 May 2013
Abstract
A general and efficient protocol has been developed to synthesise a series of novel porphyrin dimers with versatile aryl linkers via a simultaneous condensation-cyclisation-oxidation reaction of diverse bis(dipyrromethanes) with dipyrromethane-dicarbinol catalysed by indium(iii) chloride at room temperature in an efficient CH2Cl2 and CH3CN mixed-solvent. The reaction yields increased to 21–26 % based on liquid chromatography-mass spectrometry (LCMS) and isolated yields were 13–19 % due to the use of the proper mixed-solvent. This mild method is applicable to the preparation of linker-tunable porphyrin dimers with targeted functionalities and could potentially be extended to the single-step construction of longer functionalised multiporphyrin arrays.
References
[1] (a) M. J. Crossley, P. L. J. Burn, J. Chem. Soc., Chem. Commun. 1991, 1569.| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK38XotlChtA%3D%3D&md5=aafaa0c85ed38c25395595163a38d668CAS |
(b) V. Y. Lin, S. G. DiMagno, M. J. Therien, Science 1994, 264, 1105.
| Crossref | GoogleScholarGoogle Scholar |
(c) M. O. Senge, M. Fazekas, E. G. A. Notaras, W. J. Blau, M. Zawadzka, O. B. Locos, E. M. N. Mhuircheartaigh, Adv. Mater. 2007, 19, 2737.
| Crossref | GoogleScholarGoogle Scholar |
(d) N. Aratani, A. Osuka, H. S. Cho, D. Kim, J. Photochem. Photobiol. C 2002, 3, 25.
| Crossref | GoogleScholarGoogle Scholar |
[2] D. Holten, D. F. Bocian, J. S. Lindsey, Acc. Chem. Res. 2002, 35, 57.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3MXos1Cjs7Y%3D&md5=f5f7fb1cd770ebf9a323b9d0400d3258CAS | 11790089PubMed |
[3] (a) Y. Terazono, G. Kodis, K. Bhushan, J. Zaks, C. Madden, A. L. Moore, T. A. Moore, G. R. Fleming, D. J. Gust, J. Am. Chem. Soc. 2011, 133, 2916.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXhvVWis7c%3D&md5=53159976ccdbe7747386e522a1bde8eeCAS | 21314185PubMed |
(b) T. Ishizuka, L. E. Sinks, K. Song, S. T. Hung, A. Nayak, K. Clays, M. J. J. Therien, J. Am. Chem. Soc. 2011, 133, 2884.
| Crossref | GoogleScholarGoogle Scholar |
(c) J. K. Sprafke, S. D. Stranks, J. H. Warner, R. J. Nicholas, H. L. Anderson, Angew. Chem. Int. Ed. 2011, 50, 2313.
| Crossref | GoogleScholarGoogle Scholar |
[4] K. Osawa, N. Aratani, A. Osuka, Tetrahedron Lett. 2009, 50, 3333.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXmtVemsro%3D&md5=0f8e425c5387399c07cdb6d45c09a832CAS |
[5] (a) S. I. Yang, R. K. Lammi, J. Seth, J. A. Riggs, T. Arai, D. Kim, D. F. Bocian, D. Holten, J. S. J. Lindsey, J. Phys. Chem. B 1998, 102, 9426.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1cXmvFChtr0%3D&md5=3bb61674fa3b991509660933b3d9f217CAS |
(b) S. Cho, M. C. Yoon, C. H. Kim, N. Aratani, G. Mori, T. Joo, A. Osuka, D. Kim, J. Phys. Chem. C 2007, 111, 14881.
| Crossref | GoogleScholarGoogle Scholar |
(c) A. J. Mozer, M. J. Griffith, G. Tsekouras, P. Wagner, G. G. Wallace, S. Mori, K. Sunahara, M. Miyashita, J. C. Earles, K. C. Gordon, L. Du, R. Katoh, A. Furube, D. L. J. Officer, J. Am. Chem. Soc. 2009, 131, 15621.
| Crossref | GoogleScholarGoogle Scholar |
[6] N. Aratani, A. Takagi, Y. Yanagawa, T. Matsumoto, T. Kawai, Z. S. Yoon, D. Kim, A. Osuka, Chem. – Eur. J. 2005, 11, 3389.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXkvV2jurk%3D&md5=f9ca7303dda261144174f375a25edbe8CAS | 15798970PubMed |
[7] G. P. Arsenault, E. Bullock, S. F. J. MacDonald, J. Am. Chem. Soc. 1960, 82, 4384.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaF3MXhtlCksw%3D%3D&md5=9d6604677513873a504fe9536ea44d5dCAS |
[8] P. Thamyongkit, J. S. J. Lindsey, J. Org. Chem. 2004, 69, 5796.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXmtVeisrg%3D&md5=a5b5a6ce7836fe01012e2fd1ce4454aeCAS | 15307763PubMed |
[9] J. K. Laha, S. Dhanalekshmi, M. Taniguchi, A. Ambroise, J. S. Lindsey, Org. Process Res. Dev. 2003, 7, 799.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXnt1Onsb0%3D&md5=3b01bc44dc25c708d823f23569307314CAS |
[10] G. R. Geier, B. J. Littler, J. S. J. Lindsey, J. Chem. Soc., Perkin Trans. 2 2001, 701.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3MXjtFOqsrk%3D&md5=fa3ba23655cdff2f4aa03e24f4c8ef56CAS |
[11] H. Zhao, J. Liao, J. Ning, Y. Xie, Y. Cao, L. Chen, D. Yang, B. Wang, Adv. Synth. Catal. 2010, 352, 3083.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXhsVCjsLvK&md5=61ee555dde51f45b34bb8f4607f7d9eeCAS |
[12] (a) D. L. Yang, H. B. Zhao, J. X. Liao, L. Chen, D. L. Yang, B. Y. Wang, Acta. Cryst. 2011, E67, m1673.
(b) L. Chen, H. B. Zhao, Y. J. Xie, D. L. Yang, B. Y. Wang, Acta Crystallogr. 2010, E66, m1455.
(c) P. K. Kumar, P. Bhyrappa, B. Varghese, Tetrahedron Lett. 2003, 44, 4849.
| Crossref | GoogleScholarGoogle Scholar |
[13] M. Taniguchi, J. S. Lindsey, Tetrahedron 2010, 66, 5549.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXpt1eqsbg%3D&md5=32d93c075d58b95ad31edbd4919f27e6CAS |
[14] (a) P. S. Reeta, J. Kandhadi, G. Lingamallu, Tetrahedron Lett. 2010, 51, 2865.
| Crossref | GoogleScholarGoogle Scholar |
(b) K. K. Pasunooti, J. L. Song, H. Chai, P. Amaladass, W. Q. Deng, X. W. Liu, J. Photochem. Photobiol. A 2011, 218, 219.
| Crossref | GoogleScholarGoogle Scholar |
[15] B. Wang, M. R. Wasielewski, J. Am. Chem. Soc. 1997, 119, 12.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK28XnsVChur8%3D&md5=b62063316e15b55eca23d852799337a2CAS |
[16] S. Shi, Z. Li, J. Wang, J. Polym. Res. 2007, 14, 305.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXntlCjsL4%3D&md5=2c886c5d40a2bea67345e9822fb8ccc0CAS |
[17] X. C. Li, Y. Liu, M. S. Liu, A. K.-Y. Jen, Chem. Mater. 1999, 11, 1568.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1MXivVarsrY%3D&md5=5cf36095db898edd97f1ea13a1fb5bf4CAS |
[18] F. Liu, K. Wang, G. Bai, Y. Zhang, L. Gao, Inorg. Chem. 2004, 43, 1799.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXhtVylsbw%3D&md5=61acef28be6467c133b3031ccbb8065fCAS | 14989674PubMed |
[19] S. Kim, C.-K. Lim, J. Na, Y.-D. Lee, K. Kim, K. Choi, J. F. Leary, I. C. Kwon, Chem. Commun. 2010, 46, 1617.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXit1Orsrk%3D&md5=f9a4d7314f6ccdb8878b659b3cc7c533CAS |