Synthesis of a Novel Diol-Functionalized Poly(ethylene glycol)-Bridged Dicationic Ionic Liquid and its Application in Copper-Catalyzed Amination of Aryl Halides
Yinglei Wang A , Jun Luo A B , Tianjiao Hou A and Zuliang Liu AA School of Chemical Engineering, Nanjing University of Science and Technology, Nanjing 210094, China.
B Corresponding author. Email: luojun@njust.edu.cn
Australian Journal of Chemistry 66(5) 586-593 https://doi.org/10.1071/CH12487
Submitted: 29 October 2012 Accepted: 25 January 2013 Published: 27 March 2013
Abstract
A novel diol-functionalized poly(ethylene glycol)-bridged dicationic ionic liquid ([diol-PEG1000-DIL][PF6]) is prepared and used as an efficient and reusable ligand for copper-catalyzed amination. A variety of aryl iodides and aryl bromides reacted smoothly with aqueous ammonia to afford the corresponding aromatic primary amines in good to excellent yields. It is remarkable that aryl chlorides with a strong electron-withdrawing group exhibited a dramatically elevated activity in the presence of tetrabutylammonium bromide. Furthermore, the catalyst could be easily recovered and reused without obvious loss of catalytic activity after five recycling runs.
References
[1] (a) K. Weissermel, H. J. Arpe, Industry Organic Chemistry 1997 (Wiley-VCH: Weinheim).(b) S. A. Lawrence, Amines: Synthesis Properties and Applications 2004 (Cambridge University Press: Cambridge).
[2] D. M. Roundhill, Chem. Rev. 1992, 92, 1.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK38Xot12hsw%3D%3D&md5=433af72755aef2a77839309748822a7bCAS |
[3] (a) R. C. Larock, Comprehensive Organic Transformations: A Guide to Functional Group Preparation, 2nd edn. 1999 (Wiley-VCH: New York, NY).
(b) R. C. Larock, Comprehensive Organic Transformations 1989 (Wiley-VCH: New York, NY).
[4] (a) D. S. Surry, S. L. Buchwald, J. Am. Chem. Soc. 2007, 129, 10354.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXosVWitLo%3D&md5=1c3e592e91c517e894e475bc2de94726CAS |
(b) Q. L. Shen, J. F. Hartwig, J. Am. Chem. Soc. 2006, 128, 10028.
| Crossref | GoogleScholarGoogle Scholar |
(c) G. D. Vo, J. F. Hartwig, J. Am. Chem. Soc. 2009, 131, 11049.
| Crossref | GoogleScholarGoogle Scholar |
(d) M. C. Willis, Angew. Chem. Int. Ed. 2007, 46, 3402.
| Crossref | GoogleScholarGoogle Scholar |
(e) T. Schulz, C. Torborg, S. Enthaler, B. Schaffner, A. Dumrath, A. Spannenberg, H. Neumann, A. Bcrner, M. Beller, Chemistry 2009, 15, 4528.
| Crossref | GoogleScholarGoogle Scholar |
(f) R. J. Lundgren, A. S. Kumankumah, M. Stradiotto, Chemistry 2010, 16, 1983.
| Crossref | GoogleScholarGoogle Scholar |
(g) R. J. Lundgren, B. D. Peters, P. G. Alsabeh, M. Stradiotto, Angew. Chem. Int. Ed. 2010, 49, 4071.
| Crossref | GoogleScholarGoogle Scholar |
(h) A. Dumrath, C. Lvbbe, H. Neumann, R. Jackstell, M. Beller, Chemistry 2011, 17, 9599.
| Crossref | GoogleScholarGoogle Scholar |
[5] (a) J. Kim, S. Chang, Chem. Commun. 2008, 3052.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXnvFCht7k%3D&md5=72ee4b91f79d37dec0bd90d25b2e293fCAS |
(b) N. Xia, M. Taillefer, Angew. Chem. Int. Ed. 2009, 48, 337.
| Crossref | GoogleScholarGoogle Scholar |
(c) H. H. Xu, C. Wolf, Chem. Commun. 2009, 3035.
| Crossref | GoogleScholarGoogle Scholar |
(d) C. Z. Tao, W. W. Liu, A. F. Lv, M. M. Sun, Y. Tian, Q. Wang, J. Zhao, Synlett 2010, 2010, 1355.
| Crossref | GoogleScholarGoogle Scholar |
(e) C. T. Yang, Y. Fu, Y. B. Huang, J. Yi, Q. X. Guo, L. Liu, Angew. Chem. Int. Ed. 2009, 48, 7398.
| Crossref | GoogleScholarGoogle Scholar |
(f) D. P. Wang, Q. Cai, K. Ding, Adv. Synth. Catal. 2009, 351, 1722.
| Crossref | GoogleScholarGoogle Scholar |
(g) X. F. Wu, D. Christophe, Eur. J. Org. Chem. 2009, 4753.
| Crossref | GoogleScholarGoogle Scholar |
(h) Z. N. Guo, J. Y. Guo, Y. Song, L. M. Wang, G. Zou, Appl. Organomet. Chem. 2009, 23, 150.
| Crossref | GoogleScholarGoogle Scholar |
[6] L. Q. Jiang, X. Lu, H. Zhang, Y. W. Jiang, D. W. Ma, J. Org. Chem. 2009, 74, 4542.
| 1:CAS:528:DC%2BD1MXls1Gkt7o%3D&md5=674ca06082aa8d042083bbec030dcc1aCAS |
[7] F. Meng, X. H. Zhu, Y. Li, J. W. Xie, B. Wang, J. H. Yao, Y. Q. Wan, Eur. J. Org. Chem. 2010, 6149.
| 1:CAS:528:DC%2BC3cXhtlGmtbvP&md5=9f0786675b6e8ab71782d4bda61a6401CAS |
[8] Z. Q. Wu, Z. Q. Jiang, D. Wu, H. F. Xiang, X. G. Zhou, Eur. J. Org. Chem. 2010, 1854.
[9] Y. Li, X. H. Zhu, F. Meng, Y. Q. Wan, Tetrahedron 2011, 67, 5450.
| 1:CAS:528:DC%2BC3MXnslOqsr0%3D&md5=53a69b2162de6508a69ff33db4741da4CAS |
[10] H. J. Xu, Y. F. Liang, Z. Y. Cai, H. X. Qi, C. Y. Yang, Y. S. Feng, J. Org. Chem. 2011, 76, 2296.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXisFWktro%3D&md5=51fdaccb3a5e5f551ba9344ca563406cCAS |
[11] Y. F. Zhu, Y. Y. Wei, Can. J. Chem. 2011, 89, 645.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXotVCkt7s%3D&md5=7a1047070f931e3485f19161fe8dde50CAS |
[12] (a) X. Zeng, W. M. Huang, Y. T. Qiu, J. Sheng, Org. Biomol. Chem. 2011, 9, 8224.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXhsFSksr%2FO&md5=22141f28aa7ccba5f460cad9827798f1CAS |
(b) Y. L. Hu, P. C. Wang, T. Chen, M. Lu, J. Chin. Chem. Soc. 2010, 57, 604.
[13] J. M. Chen, T. J. Yuan, W. Y. Hao, M. Z. Cai, Tetrahedron Lett. 2011, 52, 3710.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXnslKiurk%3D&md5=7b23aa556c40f45ac15e83d911a1bd87CAS |
[14] E. Colacino, L. Villebrun, J. Martinez, F. Lamaty, Tetrahedron 2010, 66, 3730.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXltF2ks74%3D&md5=8eaa2d2d4c1a34aea6dbd75a36e739feCAS |
[15] H. H. Rao, H. Fu, Y. Y. Jiang, Y. F. Zhao, Angew. Chem. Int. Ed. 2009, 48, 1114.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXhslantLo%3D&md5=68d39d87f9a6ddbc110f751dfcbaafc7CAS |
[16] (a) T. Welton, Chem. Rev. 1999, 99, 2071.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1MXkt1artrw%3D&md5=f3b940ee8210914895c51fd570654f16CAS |
(b) J. Dupont, R. F. Souza, P. A. Suarez, Chem. Rev. 2002, 102, 3667.
| Crossref | GoogleScholarGoogle Scholar |
(c) H. Olivier-Bourbigou, L. Magna, D. Morvan, Appl. Catal. A Gen. 2010, 373, 1.
| Crossref | GoogleScholarGoogle Scholar |
(d) J. P. Hallett, T. Welton, Chem. Rev. 2011, 111, 3508.
| Crossref | GoogleScholarGoogle Scholar |
[17] (a) S. Lee, Chem. Commun. 2006, 1049.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XhvFCksLg%3D&md5=3f7714ad3e120de4b645f8aed6502c00CAS |
(b) M. Pucheault, M. Vaultier, Top. Curr. Chem. 2009, 290, 83.
| Crossref | GoogleScholarGoogle Scholar |
(c) R. Giernoth, Angew. Chem. Int. Ed. 2010, 49, 2834.
| Crossref | GoogleScholarGoogle Scholar |
[18] Y. Q. Cai, Y. Lu, Y. Liu, M. Y. He, Q. X. Wan, Catal. Commun. 2008, 9, 1209.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXisVertL8%3D&md5=65d8b78eb1201b5338ac73424cbf4b16CAS |
[19] (a) F. Bellina, A. Bertoli, B. Melai, F. Scalesse, F. Signori, C. Chiappe, Green Chem. 2009, 11, 622.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXlsl2itLk%3D&md5=5127932c4b39618a69dd29584c8ca98aCAS |
(b) F. Bellina, C. Chiappe, M. Lessi, Green Chem. 2012, 14, 148.
| Crossref | GoogleScholarGoogle Scholar |
[20] A. L. LaFrate, J. E. Bara, D. L. Gin, R. D. Noble, Ind. Eng. Chem. Res. 2009, 48, 8757.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXpt1GqsrY%3D&md5=6241c5b6c6ce08b5d3daf96ecafec8ebCAS |
[21] J. Y. Wang, G. H. Song, Y. Q. Peng, Tetrahedron Lett. 2011, 52, 1477.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXisFGnt7g%3D&md5=552b81579cfa6b815477b8e0aa236f05CAS |
[22] R. A. Watile, D. B. Bagal, K. M Deshmukh, K. P. Dhake, B. M. Bhanage, J. Mol. Catal. Chem. 2011, 351, 196.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXhsVOju7%2FK&md5=1a00f493ce30c4c586f986db81d70922CAS |
[23] R. A. Watile, K. M. Deshmukh, K. P. Dhake, B. M. Bhanage, Catal. Sci. Technol. 2012, 2, 1051.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38Xls1Sns7k%3D&md5=6949aa1bbbbe83a50f785826e7a99043CAS |
[24] (a) P. H. Toy, K. D. Janda, Acc. Chem. Res. 2000, 33, 546.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3cXivV2gsLk%3D&md5=4a17924d4b9589b169c77b943d17e57eCAS |
(b) T. J. Dickerson, N. N. Reed, K. D. Janda, Chem. Rev. 2002, 102, 3325.
| Crossref | GoogleScholarGoogle Scholar |
(c) M. Benaglia, A. Puglisi, F. Cozzi, Chem. Rev. 2003, 103, 3401.
| Crossref | GoogleScholarGoogle Scholar |
(d) D. E. Bergbreiter, J. H. Tian, C. Hongfa, Chem. Rev. 2009, 109, 530.
| Crossref | GoogleScholarGoogle Scholar |
(e) J. N. Lu, P. H. Toy, Chem. Rev. 2009, 109, 815.
| Crossref | GoogleScholarGoogle Scholar |
(f) E. Colacino, J. Martinez, F. Lamaty, L. S. Patrikeeva, L. L. Khemchyan, V. P. Ananikov, I. P. Beletskaya, Coord. Chem. Rev. 2012, 256, 2893.
| Crossref | GoogleScholarGoogle Scholar |
[25] (a) J. Fraga-Dubreuil, M. H. Famelart, J. P. Bazureau, Org. Process Res. Dev. 2002, 6, 374.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38XjvFagtbw%3D&md5=9a3796d4f55948a1dfc948d79b7398ebCAS |
(b) H. Hakkou, J. J. V. Eynde, J. Hamelin, J. P. Bazureau, Tetrahedron 2004, 60, 3745.
| Crossref | GoogleScholarGoogle Scholar |
(c) L. Wang, Y. H. Zhang, C. S. Xie, Y. G. Wang, Synlett 2005, 12, 1861.
(d) J. C. Legeay, J. J. V. Eynde, J. P. Bazureau, Tetrahedron 2005, 61, 12386.
| Crossref | GoogleScholarGoogle Scholar |
(e) C. M. Jin, C. F. Ye, B. S. Phillips, J. S. Zabinski, X. Q. Liu, W. M. Liu, J. M. Shreeve, J. Mater. Chem. 2006, 16, 1529.
| Crossref | GoogleScholarGoogle Scholar |
(f) Z. Zeng, B. S. Phillips, J. C. Xiao, J. M. Shreeve, Chem. Mater. 2008, 20, 2719.
| Crossref | GoogleScholarGoogle Scholar |
(g) C. Wu, J. J. Peng, J. Y. Li, Y. Bai, Y. Q. Hu, G. Q. Lai, Catal. Commun. 2008, 10, 248.
| Crossref | GoogleScholarGoogle Scholar |
(h) H. Z. Zhi, C. X. Lv, Q. Zhang, J. Luo, Chem. Commun. 2009, 2878.
| Crossref | GoogleScholarGoogle Scholar |
(i) P. Petiot, C. Charnay, J. Martinez, L. Puttergill, F. Galindo, F. Lamaty, E. Colacino, Chem. Commun. 2010, 46, 8842.
| Crossref | GoogleScholarGoogle Scholar |
(j) H. Li, Z. S. Hou, Y. X. Qiao, B. Feng, Y. Hu, X. R. Wang, X. G. Zhao, Catal. Commun. 2010, 11, 470.
| Crossref | GoogleScholarGoogle Scholar |
(k) H. Li, Y. X. Qiao, L. Hua, Z. S. Hou, B. Feng, Z. Y. Pan, Y. Hu, X. R. Wang, X. G. Zhao, Y. Y. Yu, ChemCatChem 2010, 2, 1165.
| Crossref | GoogleScholarGoogle Scholar |
(l) D. Fang, J. M. Yang, C. M. Jiao, Catal. Sci. Technol. 2011, 1, 243.
| Crossref | GoogleScholarGoogle Scholar |
(m) N. Liu, C. Liu, Z. L. Jin, Green Chem. 2012, 14, 592.
| Crossref | GoogleScholarGoogle Scholar |
(n) Z. Z. Yang, Y. N. Zhao, L. N. He, J. Gao, Z. S. Yin, Green Chem. 2012, 14, 519.
| Crossref | GoogleScholarGoogle Scholar |
(o) S. K. Tang, G. A. Baker, S. Ravula, J. E. Jones, H. Zhao, Green Chem. 2012, 14, 2922.
| Crossref | GoogleScholarGoogle Scholar |
[26] (a) F. Y. Kwong, A. Klapars, S. L. Buchwald, Org. Lett. 2002, 4, 581.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38XlsVCqsg%3D%3D&md5=f5b5cf5557869c814b935428f86999dfCAS |
(b) F. Y. Kwong, S. L. Buchwald, Org. Lett. 2002, 4, 3517.
| Crossref | GoogleScholarGoogle Scholar |
[27] F. Godoy, C. Segarra, M. Poyatos, E. Peris, Organometallics 2011, 30, 684.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXhsVertb0%3D&md5=b171339b5fc35feec4fd9e8de9efd360CAS |