1,3-Di(alkoxy)imidazolium-based Ionic Liquids: Improved Synthesis and Crystal Structures
Carmen Froschauer A B D , Robert Salchner A , Gerhard Laus A , Hedda K. Weber B , Richard Tessadri C , Ulrich Griesser A , Klaus Wurst A , Volker Kahlenberg C and Herwig Schottenberger AA Faculty of Chemistry and Pharmacy, University of Innsbruck, Innrain 80–82, 6020 Innsbruck, Austria.
B Competence Center of Wood Composites and Wood Chemistry K-Plus, Altenberger Strasse 69, 4021 Linz, Austria.
C Institute of Mineralogy and Petrography, University of Innsbruck, Innrain 52, 6020 Innsbruck, Austria.
D Corresponding author. Email: carmen.froschauer@uibk.ac.at
Australian Journal of Chemistry 66(3) 391-395 https://doi.org/10.1071/CH12485
Submitted: 24 October 2012 Accepted: 19 January 2013 Published: 22 February 2013
Abstract
A new and convenient synthetic pathway to 1,3-di(alkoxy)imidazolium bis(trifluoromethylsulfonyl)amides and novel 1,3-di(alkoxy)imidazolium tetrachloroferrates was developed. As an intermediate isolation step of the respective hexafluorophosphates was required in previously reported preparations, they suffered from low overall yields and additional expense. The use of FeCl3/HCl resulted in substantially improved yields and allows one-pot preparations with good scalability. Results of single-crystal X-ray structure determination of the new tetrachloroferrate salts are discussed.
References
[1] M. Petkovic, K. R. Seddon, L. P. N. Rebelo, C. S. Pereira, Chem. Soc. Rev. 2011, 40, 1383.| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXit1KisL0%3D&md5=56c5335f464b7bc9922347c69e834c99CAS |
[2] L. C. Branco, J. N. Rosa, J. J. Moura Ramos, C. A. M. Afonso, Chem.– Eur. J. 2002, 8, 3671.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38Xmslequ70%3D&md5=461dd3fa704d06dd8bdf1f9c6c6db9a3CAS |
[3] G. Gurau, H. Rodriguez, S. P. Kelley, P. Janiczek, R. S. Kalb, R. D. Rogers, Angew. Chem. Int. Ed. 2011, 50, 12024.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXhtlWlur%2FI&md5=af058411eaba2b77d5889e574f1c63a6CAS |
[4] P. Bonhôte, A.-P. Dias, N. Papageorgiou, K. Kalyanasundaram, M. Graetzel, Inorg. Chem. 1996, 35, 1168.
| Crossref | GoogleScholarGoogle Scholar |
[5] A.-L. Revelli, F. Mutelet, J.-N. Jaubert, J. Phys. Chem. B 2010, 114, 8199.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXmvVSmsLc%3D&md5=568eb9a368962dff1e5002aba75be991CAS |
[6] A.-L. Revelli, F. Mutelet, J.-N. Jaubert, J. Phys. Chem. B 2010, 114, 12908.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXhtFygsLjL&md5=fb684ab9749ab60e6989c4933c764ef9CAS |
[7] Q. Zhou, K. Fitzgerald, P. D. Boyle, W. A. Henderson, Chem. Mater. 2010, 22, 1203.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXhsFWmtbfF&md5=e932d1c86cb3f04cf2f8fcbf8df1c2adCAS |
[8] T. Brendgen, T. Fahlbusch, M. Frank, D. T. Schuehle, M. Sessler, J. Schatz, Adv. Synth. Catal. 2009, 351, 303.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXjtl2mu7c%3D&md5=4661a54e226c52a334f398112e65a544CAS |
[9] I. A. Shkrob, T. W. Marin, S. D. Chemerisov, J. L. Hatcher, J. F. Wishart, J. Phys. Chem. B 2011, 115, 3889.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXjsVCls78%3D&md5=54f5a9f4d2480115c5bdb07d8729c108CAS |
[10] M. Matzke, J. Arning, J. Ranke, B. Jastorff, S. Stolte, in Handbook of Green Chemistry (Ed. P. T. Anastas) 2010, Vol. 6, pp. 233–298 (Wiley-VCH: Weinheim).
[11] D. R. MacFarlane, K. R. Seddon, Aust. J. Chem. 2007, 60, 3.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXhtVeis7o%3D&md5=b7afb40bcaaf48c1643b07abdca26af8CAS |
[12] P. J. Scammells, J. L. Scott, R. D. Singer, Aust. J. Chem. 2005, 58, 155.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXisVWlt7o%3D&md5=eac9db7c4c9de5e81bb28ecc2a7e93a9CAS |
[13] A. W. T. King, A. Parviainen, P. Karhunen, J. Matikainen, L. K. J. Hauru, H. Sixta, I. Kilpelaeinen, RSC Adv. 2012, 2, 8020.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38Xht1ekt7fO&md5=8d2e703eeb106afba89d4305c7ae5435CAS |
[14] A. W. T. King, J. Asikkala, I. Mutikainen, P. Jaervi, I. Kilpelaeinen, Angew. Chem. Int. Ed. 2011, 50, 6301.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXmsValt7o%3D&md5=b2b8f7ddf5d4e7c98cb1fdd8f2449f6dCAS |
[15] T. P. T. Pham, C.-W. Cho, Y.-S. Yun, Water Res. 2010, 44, 352.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXhvFegsr8%3D&md5=6bb6734e6d62fff75de396ded6c17e2fCAS |
[16] S. Tang, G. A. Baker, H. Zhao, Chem. Soc. Rev. 2012, 41, 4030.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38Xmt1yksLc%3D&md5=79299143d2c5c12ffd36b4095412a289CAS |
[17] Y. Deng, P. Besse-Hoggan, M. Sancelme, A.-M. Delort, P. Husson, M. F. C. Gomes, J. Hazard. Mater. 2011, 198, 165.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXhsFWqs7zN&md5=7b52a4903a8883be8839464343970c7bCAS |
[18] S. Stolte, Ph.D. thesis: Beiträge zum strukturellen Design von Ionischen Flüssigkeiten mit einem reduzierten Gefahrenpotenzial 2007, University of Bremen, Germany.
[19] M. Hummel, G. Laus, A. Schwärzler, G. Bentivoglio, E. Rubatscher, H. Kopacka, K. Wurst, V. Kahlenberg, T. Gelbrich, U. J. Griesser, T. Röder, H. K. Weber, H. Schottenberger, H. Sixta, in Cellulose Solvents: for Analysis, Shaping and Chemical Modification (Eds T. Liebert, T. J. Heinze, K. J. Edgar) 2010, Vol. 1033, Ch. 13, pp. 229–259 (American Chemical Society: Washington, DC).
[20] G. Laus, A. Schwaerzler, G. Bentivoglio, M. Hummel, V. Kahlenberg, K. Wurst, E. Kristeva, J. Schütz, H. Kopacka, C. Kreutz, G. Bonn, Y. Andriyko, G. Nauer, H. Schottenberger, Z. Naturforsch., B. J. Chem. Sci. 2008, 63, 447.
| 1:CAS:528:DC%2BD1cXksFWhtb0%3D&md5=0cd3e1cd4087e7df40bc958b4bc68681CAS |
[21] G. Laus, V. Kahlenberg, H. Schottenberger, Z. Kristallogr., New Cryst. Struct. 2010, 225, 759.
| 1:CAS:528:DC%2BC3MXitFSrsLo%3D&md5=3efda34da65725ca733042fb6e33acc4CAS |
[22] G. Laus, K. Wurst, V. Kahlenberg, H. Kopacka, C. Kreutz, H. Schottenberger, Z. Naturforsch. 2010, 65, 776.
| 1:CAS:528:DC%2BC3cXhtVeisLbJ&md5=ea37af141f259dbd623084b7724a800eCAS |
[23] A. Schwaerzler, G. Laus, K. Wurst, G. Bonn, H. Schottenberger, Z. Kristallogr. 2009, 224, 595.
| 1:CAS:528:DC%2BC3cXhsVShsrc%3D&md5=b691f49e97ed2838f9cc2fffbd7ca23cCAS |
[24] G. Laus, A. Schwaerzler, P. Schuster, G. Bentivoglio, M. Hummel, K. Wurst, V. Kahlenberg, T. Loerting, J. Schuetz, P. Peringer, G. Bonn, G. Nauer, H. Schottenberger, Z. Naturforsch. 2007, 62, 295.
| 1:CAS:528:DC%2BD2sXlt1ykurk%3D&md5=5a58d5e158211a38d3a21080ad41ce91CAS |
[25] S. Bartz, B. Blumenroeder, A. Kern, J. Fleckenstein, S. Frohnapfel, J. Schatz, A. Wagner, Z. Naturforsch. 2009, 64, 629.
| 1:CAS:528:DC%2BD1MXps1elurg%3D&md5=d2c2272521afe85f6e1c03e7a150feb5CAS |
[26] K. Hayes, J. Heterocycl. Chem. 1974, 11, 615.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaE2cXlsFaju7Y%3D&md5=51c8de7f8b2751adbadd5403d183e754CAS |
[27] H. Towliati, Chem. Ber. 1970, 103, 3952.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaE3MXltlKnsA%3D%3D&md5=0591c7b055d1ba2de3cbd3a43f4c556bCAS |
[28] A. R. Hayman, D. O. Gray, Phytochemistry 1987, 26, 3247.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL1cXptFOjsA%3D%3D&md5=c9f9e5a99bc3bb2481e2ff7652997d47CAS |
[29] G. Laus, K. Wurst, H. Schottenberger, Z. Kristallogr. 2012, 227, 293.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XhsFWrs7fE&md5=4454075a6f82c02f311aed0820838043CAS |
[30] G. Laus, V. Kahlenberg, W. Reischl, H. Schottenberger, Z. Kristallogr. 2011, 226, 623.
| 1:CAS:528:DC%2BC38XhsFyhsbw%3D&md5=51e4f6513069795639c737cd9c4ce20dCAS |
[31] J. Palomar, J. Lemus, M. A. Gilarranz, J. J. Rodriguez, Carbon 2009, 47, 1846.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXltVGis74%3D&md5=3df634599ee8bfbe7c847816b1f97d27CAS |
[32] G. Laus, J. Stadlwieser, W. Kloetzer, Synthesis 1989, 1989, 773.
| Crossref | GoogleScholarGoogle Scholar |
[33] K. Akagane, G. G. Allan, Chem. Ind. 1974, 1, 38.
[34] E. Bodo, L. Gontrani, R. Caminiti, N. V. Plechkova, K. R. Seddon, A. Triolo, J. Phys. Chem. B 2010, 114, 16398.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXhsVGktLzP&md5=717f86537cfe10aac7c66582a166cfe0CAS |
[35] R. H. Herber, I. Nowik, M. E. Kostner, V. Kahlenberg, C. Kreutz, G. Laus, H. Schottenberger, Int. J. Mol. Sci. 2011, 12, 6397.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXhtlCjsrfE&md5=377b857a1f32a5070218240c996fc34eCAS |
[36] X. Shen, Q. Chen, J. Zhang, P. Fu, in Ionic Liquids: Theory, Properties, New Approaches (Ed. A. Kokorin) 2011, Ch. 19, pp. 427–482 (InTech: Rijeka).
[37] M. Armand, F. Endres, D. R. MacFarlane, H. Ohno, B. Scrosati, Nat. Mater. 2009, 8, 621.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXovFSisr0%3D&md5=db314de22f63878f672812f6ee13d7edCAS |