Register      Login
Australian Journal of Chemistry Australian Journal of Chemistry Society
An international journal for chemical science
RESEARCH ARTICLE

Ni/MWCNT-Supported Palladium Nanoparticles as Magnetic Catalysts for Selective Oxidation of Benzyl Alcohol

Mingmei Zhang A , Qian Sun A , Zaoxue Yan A , Junjie Jing A , Wei Wei A , Deli Jiang A , Jimin Xie A B and Min Chen A
+ Author Affiliations
- Author Affiliations

A School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013, China.

B Corresponding author. Email: Xiejm391@sohu.com

Australian Journal of Chemistry 66(5) 564-571 https://doi.org/10.1071/CH12484
Submitted: 23 October 2012  Accepted: 11 January 2013   Published: 20 February 2013

Abstract

Well dispersed Pd@Ni bimetallic nanoparticles on multi-walled carbon nanotubes (Pd@Ni/MWCNT) are prepared and used as catalysts for the oxidation of benzyl alcohol. Scanning electron microscopy, transmission electron microscopy, energy-dispersive X-ray spectroscopy analysis, and X-ray diffraction were performed to characterise the synthesised catalyst. The results show a uniform dispersion of Pd@Ni nanoparticles on MWCNT with an average particle size of 4.0 nm. The as synthesised catalyst was applied to the oxidation of benzyl alcohol. A 99 % conversion of benzyl alcohol and a 98 % selectivity of benzaldehyde were achieved by using the Pd@Ni/MWCNT (Pd: 0.2 mmol) catalyst with water as a solvent and H2O2 as oxidant at 80°C. The catalytic activity of Pd@Ni/MWCNT towards benzyl alcohol is higher than that of a Pd/MWCNT catalyst at the same Pd loadings. The catalyst can be easily separated due to its magnetic properties.


References

[1]  D. I. Enache, J. K. Edwards, P. Landon, B. Solsona-Espriu, A. F. Carley, A. A. Herzing, M. Watanabe, C. J. Kiely, D. W. Knight, G. J. Hutchings, Science 2006, 311, 362.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XlvFSgsA%3D%3D&md5=4b929068b9b61844f5d9c4e3183847f1CAS |

[2]  J. Han, Y. Liu, L. Li, R. Guo, Langmuir 2009, 25, 11054.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXms1SmsL8%3D&md5=c7e7071513524a99abf9fa80dc3502ffCAS |

[3]  L. Wang, L. Shen, X. Xu, L. Xu, Y. Qian, RSC Advances, 2 2012, 10689.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XhsFSrtbnL&md5=db4691e5c07ea08c7ef86cbb676002ccCAS |

[4]  G. F. Zhao, H. Y. Hu, M. M. Deng, Y. Lu, Chem. Commun. 2011, 47, 9642.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXhtVWgs7rN&md5=dd8c13e44e767c98a1e6c0af03f1169eCAS |

[5]  X. C. Chen, Y. Q. Hou, H. Wang, Y. Cao, J. H. He, J. Phys. Chem. C 2008, 112, 8172.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXlvFSgsbs%3D&md5=fe93b049b24f49fcf5596a62679f9681CAS |

[6]  A. Villa, D. Wang, N. Dimitratos, D. S. Su, V. Trevisan, L. Prati, Catal. Today 2010, 150, 8.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXhvFyjs74%3D&md5=2b13893e3255122345cd720789225c17CAS |

[7]  Z. X. Yan, M. Cai, P. K. Shen, J. Mater. Chem. 2012, 22, 2133.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XltVSlsA%3D%3D&md5=29c497ae368890d1d9428b8c62873feeCAS |

[8]  Z. X. Yan, C. X. Wang, P. K. Shen, Int. J. Hydrogen Energy 2012, 37, 4728.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XitVCmt78%3D&md5=c544c5f793f580b38604791c6015d1b9CAS |

[9]  Y. Z. Xiang, Y. A. Lv, T. Y. Xu, X. N. Li, J. G. Wang, J. Mol. Catal. Chem. 2011, 351, 70.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXhsVOju7zJ&md5=c5a7dc90fd627c789703388094087eb4CAS |

[10]  K. Deplanche, I. P. Mikheenko, J. A. Bennett, M. Merroun, H. Mounzer, J. Wood, L. E. Macaskie, Top. Catal. 2011, 54, 1110.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXhtlyqurfE&md5=a941f0cd6b4bf0ad6c33c0ad04902df5CAS |

[11]  C. Della Pina, E. Falletta, M. Rossi, J. Catal. 2008, 260, 384.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXhsVWhsbvM&md5=9178b1cb45d0f60c34e37959fcea07beCAS |

[12]  S. Marx, A. Baiker, J. Phys. Chem. C 2009, 113, 6191.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXjsFylu70%3D&md5=3a1f46d41fcd15ff2208457cb2d07f28CAS |

[13]  D. Matthey, J. G. Wang, S. Wendt, J. Matthiesen, R. Schaub, E. Laegsgaard, B. Hammer, F. Besenbacher, Science 2007, 315, 1692.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXjtlWnt7Y%3D&md5=bdea6c731d5e5c1f4bed5af8f4f95477CAS |

[14]  K. C. Mondal, L. M. Cele, M. J. Witcomb, N. J. Coville, Catal. Commun. 2008, 9, 494.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXhtlyns7rI&md5=1986658a6f22c4de9feb07f023c4b5eaCAS |

[15]  S. H. Sun, G. X. Zhang, D. S. Geng, Y. G. Chen, M. N. Banis, R. Y. Li, M. Cai, X. L. Sun, Chem. – Eur. J. 2010, 16, 829.
         | 1:CAS:528:DC%2BC3cXos1Ggsg%3D%3D&md5=8f5fbbfecea426076e08001b22a75515CAS |

[16]  Z. Liu, E. T. Ada, M. Shamsuzzoha, G. B. Thompson, D. E. Nikles, Chem. Mater. 2006, 18, 4946.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XoslOqsL8%3D&md5=e7869c3cbe8ee215ef0d23fe846668b4CAS |

[17]  H. Y. Zhang, Y. Xie, Z. Y. Sun, R. T. Tao, C. L. Huang, Y. F. Zhao, Z. M. Liu, Langmuir 2011, 27, 1152.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXhs1SrsL%2FI&md5=a01a6ff45b6df6c8b39b66fbf880363dCAS |

[18]  P. Panagiotopoulou, D. I. Kondarides, Catal. Today 2006, 112, 49.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XhvVSntLk%3D&md5=e9e78d803461663e63efa209571932c5CAS |

[19]  Y. C. Zhao, X. L. Yang, J. N. Tian, F. Y. Wang, L. Zhan, Int. J. Hydrogen Energy 2010, 35, 3249.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXktlSitbw%3D&md5=4d12dbb259513df0d85680c9288c61c9CAS |

[20]  M. Shao, K. Sasaki, N. S. Marinkovic, L. Zhang, R. R. Adzic, Electrochem. Commun. 2007, 9, 2848.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXhtlCltrbO&md5=551320a491c64b0f8e1a0324388fc197CAS |

[21]  D. Chen, J. Li, C. Shi, X. Du, N. Zhao, J. Sheng, S. Liu, Chem. Mater. 2007, 19, 3399.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXmt12isLc%3D&md5=60af88bfef5c99fea7e7d4882c35b90bCAS |

[22]  R. Harpeness, A. Gedanken, Langmuir 2004, 20, 3431.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXhslCqur8%3D&md5=fcd3ee2c7d302fabba7c62bc5047c7fdCAS |

[23]  S. Nath, S. Praharaj, S. Panigrahi, S. K. Ghosh, S. Kundu, S. Basu, T. Pal, Langmuir 2005, 21, 10405.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXhtVeks73E&md5=d5ea3e258f95b6e75548264a49f2c354CAS |

[24]  R. R. Adzic, J. Zhang, K. Sasaki, M. B. Vukmirovic, M. Shao, J. X. Wang, A. U. Nilekar, M. Mavrikakis, J. A. Valerio, F. Uribe, Top. Catal. 2007, 46, 249.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXhsVWltLzP&md5=81871e1fce8286849aee3ceca57eb26bCAS |

[25]  Z. J. Wang, Q. X. Zhang, D. Kuehner, X. Y. Xu, A. Ivaska, L. Niu, Carbon 2008, 46, 1687.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXhtFOls7fP&md5=1161287d40a6209d1c5823dcfec7b7bdCAS |

[26]  S. Y. Wang, S. P. Jiang, T. J. White, J. Guo, X. Wang, J. Phys. Chem. C 2009, 113, 18935.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXht1ajtbfE&md5=aa9762e561658cbc816b5c3960de4ee0CAS |

[27]  K. Sasaki, R. R. Adzic, J. Electrochem. Soc. 2008, 155, B180.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXhtFenurw%3D&md5=fa648246fc7db4adc59f9459a9d7d38aCAS |

[28]  B. H. Wu, Y. J. Kuang, X. H. Zhang, J. H. Chen, Nano Today 2011, 6, 75.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXjslGhsLg%3D&md5=366fef5ccbbfba3428d4fcbb672b93baCAS |

[29]  H. B. Chu, L. Wei, R. L. Cui, J. Y. Wang, Y. Li, Coord. Chem. Rev. 2010, 254, 1117.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXivVOqu7Y%3D&md5=d0be3df3084ab72e1f9274c958fe79f7CAS |

[30]  J. P. Cheng, X. B. Zhang, F. Liu, J. P. Tu, Y. Ye, Y. J. Ji, C. P. Chen, Carbon. 2003, 41, 1965.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXltlOitbY%3D&md5=ea759c676ea6df285b6af9d5e1f0c70dCAS |

[31]  H. Xu, L. P. Zeng, S. J. Xing, G. Y. Shi, Y. Z. Xian, L. T. Jin, Electrochem. Commun. 2008, 10, 1839.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXhsVWhsb7K&md5=caa0e5a0d6bf99bc3ea0043acda52c48CAS |

[32]  A. Tegou, S. Papadimitriou, I. Mintsouli, S. Armyanov, E. Valovab, G. Kokkinidis, S. Sotiropoulos, Catal. Today 2011, 170, 126.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXnslKhsLs%3D&md5=bafb5a89e3248125f2c24bf2e70ddbc7CAS |

[33]  M. C. Zhao, C. Rice, R. I. Masel, P. Waszczuk, A. Wieckowskib, J. Electrochem. Soc. 2004, 151, A131.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXpvFOltrg%3D&md5=ef29d50c7192e919f96f48d8eab7615aCAS |

[34]  A. F. Lee, Z. Chang, P. Ellis, S. F. J. Hackett, K. Wilson, J. Phys. Chem. C 2007, 111, 18844.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXhtlOntbnK&md5=53cb7377288282d7f481b22cbf09a07dCAS |

[35]  M. T. Zhao, W. Xiao, H. J. Zhang, K. Cho, Phys. Chem. Chem. Phys. 2011, 13, 11657.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXnsVWls70%3D&md5=9d6fa53db1070802cfb09b9d100b6312CAS |