Register      Login
Australian Journal of Chemistry Australian Journal of Chemistry Society
An international journal for chemical science
RESEARCH ARTICLE

Transition-Metal Supramolecular Complexes with 2-Phenylacetate and a Bent Dipyridyl Ligand: In Situ Hydrothermal Syntheses, Crystal Structures, and Photoluminescent Properties

Wei Guo A , Li-Qiang Han A and Ya-Mei Guo A B
+ Author Affiliations
- Author Affiliations

A Department of Chemistry, Tianjin University, Tianjin 300072, China.

B Corresponding author. Email: ymguo@tju.edu.cn

Australian Journal of Chemistry 66(5) 539-547 https://doi.org/10.1071/CH12483
Submitted: 22 October 2012  Accepted: 13 December 2012   Published: 20 February 2013

Abstract

This work presents seven CoII, CdII, ZnII, MnII, and NiII supramolecular complexes synthesised by hydrothermal reactions from a bent dipyridyl ligand 2,5-bis(4-pyridyl)-1,3,4-oxadiazole (4-bpo) and 2-phenylmalonic acid (2-phmalH2). Interestingly, the in situ generation of 2-phenylacetic acid (Hpa) by decarboxylation of the 2-phenylmalonic acid precursor is observed in all the complexes. Single-crystal X-ray diffraction reveals that these complexes display a variety of 1D (for 27) and monomeric (for 1) coordination motifs, which are further extended into polymeric supramolecular architectures by multiple secondary interactions, such as hydrogen bonding and aromatic stacking. The results evidently demonstrate that the structures of 17 are significantly affected by the metal centres and the counter anions of inorganic salts. The photoluminescence properties of complexes 17 have also been investigated and discussed.


References

[1]  J. R. Li, J. Sculley, H. C. Zhou, Chem. Rev. 2012, 112, 869.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXht1OnsbbL&md5=66e0b0302e11a5248b9aaafb8405e444CAS |

[2]  R. E. Morris, X. Bu, Nat. Chem. 2010, 2, 353.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXltVylurg%3D&md5=b360e06a1373c854b26556608cca2420CAS |

[3]  B. L. Chen, S. C. Xiang, G. D. Qian, Acc. Chem. Res. 2010, 43, 1115.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXlslyhtrs%3D&md5=245146d035647944f530b98438c2c85eCAS |

[4]  B. Xu, X. Lin, Z. Z. He, Z. J. Lin, R. Cao, Chem. Commun. 2011, 47, 3766.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXjt1SnsbY%3D&md5=503cb6004eb96c223042501f91146f9cCAS |

[5]  T. Kashiwagi, F. Amemiya, T. Fuchigami, M. Atobe, Chem. Commun. 2012, 48, 2806.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XitlGgsLg%3D&md5=21d5246ccbf270d99437e947b35e677fCAS |

[6]  O. Chepelin, J. Ujma, P. E. Barran, P. J. Lusby, Angew. Chem. Int. Ed. 2012, 51, 4194.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XjtFOltL4%3D&md5=f17056a9d7676e788282283cdbc3363fCAS |

[7]  G. Férey, Chem. Soc. Rev. 2008, 37, 191.
         | Crossref | GoogleScholarGoogle Scholar |

[8]  M. J. Zaworotko, Nature 2008, 451, 410.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXhtVGnsLg%3D&md5=101fa6864d4d6b84e037d40bfed0ef7eCAS |

[9]  S. M. Neville, G. J. Halder, K. W. Chapman, M. B. Duriska, B. Moubaraki, K. S. Murray, C. J. Kepert, J. Am. Chem. Soc. 2009, 131, 12106.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXps1ylu7s%3D&md5=31f259af3d9539a4ecfffb9922a2a006CAS |

[10]  X. D. Chen, X. H. Zhao, M. Chen, M. Du, Chem. – Eur. J. 2009, 15, 12974.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXhsFektLbO&md5=4a2b26b8f58fb19273c5c3d6ba251d43CAS |

[11]  F. S. Guo, J. D. Leng, J. L. Liu, Z. S. Meng, M. L. Tong, Inorg. Chem. 2012, 51, 405.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXhsFOhtrjJ&md5=b8e34c0d880d9bd3c887511d36f46d7bCAS |

[12]  G. G. Shan, H. B. Li, H. T. Cao, D. X. Zhu, P. Li, Z. M. Su, Y. Liao, Chem. Commun. 2012, 48, 2000.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XovFyqsg%3D%3D&md5=d629380bed78219d6a160c8005f0b735CAS |

[13]  D. F. Weng, Z. M. Wang, S. Gao, Chem. Soc. Rev. 2011, 40, 3157.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXmsVWkurw%3D&md5=064e2704207ec5f57bb493239e237e6cCAS |

[14]  H. Y. Zhao, Z. Jin, H. M. Su, X. F. Jing, F. X. Sun, G. S. Zhu, Chem. Commun. 2011, 47, 6389.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXmsVGgsbg%3D&md5=e4a611fe3cc375db99af173661a1fb3aCAS |

[15]  Y. X. Hu, S. C. Xiang, W. W. Zhang, Z. X. Zhang, L. Wang, J. F. Bai, B. L. Chen, Chem. Commun. 2009, 7551.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXhsVymurbE&md5=4d774f0dc34d0270a8272560c8340960CAS |

[16]  S. Kitagawa, K. Uemura, Chem. Soc. Rev. 2005, 34, 109.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXmvFCrsA%3D%3D&md5=e5b6e7c3d763e0f323d852af291b3c6eCAS |

[17]  S. T. Zheng, M. H. Wang, G. Y. Yang, Inorg. Chem. 2007, 46, 9503.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXhtFSqsrnI&md5=32740bd6481547ad4b7e818c2831b308CAS |

[18]  C. P. Li, X. H. Zhao, X. D. Chen, Q. Yu, M. Du, Cryst. Growth Des. 2010, 10, 5034.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXhtlKjsb3E&md5=73523d196052a2c2166bc7fb4e9ad431CAS |

[19]  Y. Z. Zheng, Y. B. Zhang, M. L. Tong, W. Xue, X. M. Chen, Dalton Trans. 2009, 1396.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXhs1eqtb4%3D&md5=2c18d8cfef6f453573cd4c1f8056b6fbCAS |

[20]  L. X. Sun, Y. Qi, Y. X. Che, S. R. Batten, J. M. Zheng, Cryst. Growth Des. 2009, 9, 2995.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXms1Kmsro%3D&md5=6b8cc9178be5dbf88e44b90bcb392231CAS |

[21]  D. Sun, F. J. Liu, R. B. Huang, L. S. Zheng, Inorg. Chem. 2011, 50, 12393.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXhsVequr%2FJ&md5=c3d392ae5bc62a4a0162f9bd7f4a60f0CAS |

[22]  Y. L. Gai, F. L. Jiang, K. C. Xiong, L. Chen, D. Q. Yuan, L. J. Zhang, K. Zhou, M. C. Hong, Cryst. Growth Des. 2012, 12, 2079.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38Xjs1Clsbc%3D&md5=346cf3e901c7fd3664e84dec4e79a4baCAS |

[23]  X. M. Chen, M. L. Tong, Acc. Chem. Res. 2007, 40, 162.
         | Crossref | GoogleScholarGoogle Scholar |

[24]  Z. J. Lin, M. L. Tong, Coord. Chem. Rev. 2011, 255, 421.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXhsFCrurnE&md5=b5effeb2e1cbe586ecebd9b2096eb6cfCAS |

[25]  D. F. Weng, W. H. Mu, X. J. Zheng, D. C. Fang, L. P. Jin, Inorg. Chem. 2008, 47, 1249.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXhtFShur4%3D&md5=b4cb6266895dbe0477dc9c22053a61f7CAS |

[26]  D. Liu, Z. G. Ren, H. X. Li, Y. Chen, J. Wang, Y. Zhang, J. P. Lang, CrystEngComm 2010, 12, 1912.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXhtl2hsbrK&md5=53caf489bcccdad4ccf795a0b63cfe6fCAS |

[27]  J. H. Cui, L. F. Huang, Z. Z. Lu, Y. Z. Li, Z. J. Guo, H. G. Zhen, CrystEngComm 2012, 14, 2258.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XisFOku7w%3D&md5=f50a9dbfe756b5a5d53707e80daa73fdCAS |

[28]  C. P. Li, M. Du, Chem. Commun. 2011, 47, 5958.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXmtVyju78%3D&md5=c9a5761c5a5791d0bd1b436205e0c852CAS |

[29]  Y. Z. Zheng, M. L. Tong, X. M. Chen, New J. Chem. 2004, 28, 1412.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXhtVGqurvP&md5=d4a99660fbf1a27c9a50e314574f78adCAS |

[30]  J. Tao, Y. Zhang, M. L. Tong, X. M. Chen, T. Yuen, C. L. Lin, X. Y. Huang, J. Li, Chem. Commun. 2002, 1342.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38Xks1Skt7g%3D&md5=f0d48e58072faa16ee0b07a0309bfd1aCAS |

[31]  Y. Z. Zheng, M. L. Tong, X. M. Chen, J. Mol. Struct. 2006, 796, 9.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XptlGguro%3D&md5=660eccc626e7c8133eaf6593b512c7b1CAS |

[32]  J. G. Lin, Y. Su, Z. F. Tian, L. Qiu, L. L. Wen, Z. D. Lu, Y. Z. Li, Q. J. Meng, Cryst. Growth Des. 2007, 7, 2526.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXhtlSgur7L&md5=3b2748ff4daa213fe9a27bc605d9b11fCAS |

[33]  L. F. Ma, L. Y. Wang, Y. Y. Wang, M. Du, J. G. Wang, CrystEngComm 2009, 11, 109.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXhsVCrtw%3D%3D&md5=f72d7a83ab8907aeea3674dc90922c2dCAS |

[34]  M. Nagarathinam, J. J. Vittal, Chem. Commun. 2008, 438.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXltFSnsA%3D%3D&md5=60c07cac72677f1e17c12368e34d1d66CAS |

[35]  M. Du, X. J. Jiang, X. J. Zhao, Inorg. Chem. 2007, 46, 3984.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXkt1Sitrs%3D&md5=3a471402ec9ef04e29b81d3cd042b29eCAS |

[36]  M. Du, X. J. Jiang, X. J. Zhao, Inorg. Chem. 2006, 45, 3998.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XjsFWqurc%3D&md5=d65786118c107005c8786aa05a0a88e5CAS |

[37]  J. Chen, C. P. Li, M. Du, CrystEngComm 2011, 13, 1885.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXjt12hs7w%3D&md5=3007695e6b571abe01e25fcc3ec16a95CAS |

[38]  M. Du, Z. H. Zhang, C. P. Li, J. Ribas-Ariño, N. Aliaga-Alcalde, J. Ribas, Inorg. Chem. 2011, 50, 6850.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXnvFKgsLg%3D&md5=52d918f6b07b2338d03f12a21c4f6eb6CAS |

[39]  C. P. Li, J. Chen, M. Du, CrystEngComm 2010, 12, 4392.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXhsFWhs7rM&md5=11cf041b20525eaf2a1a9437f880f656CAS |

[40]  C. P. Li, Q. Yu, J. Chen, M. Du, Cryst. Growth Des. 2010, 10, 2650.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXltVyntrg%3D&md5=a925b9629cdde2c0f3a70f5b571a7773CAS |

[41]  M. Du, Q. Wang, C. P. Li, X. J. Zhao, J. Ribas, Cryst. Growth Des. 2010, 10, 3285.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXms1Shsrg%3D&md5=7225f37c176995ac4cc1f08fd7d292ebCAS |

[42]  M. Du, X. H. Bu, Bull. Chem. Soc. Jpn. 2009, 82, 539.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXms1Kisbk%3D&md5=ea4bbfb430a1e684ef3193c97de2327bCAS |

[43]  A. L. Spek, J. Appl. Cryst. 2003, 36, 7.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXltlChtw%3D%3D&md5=7ef7d36c64ac20944777b8342be85945CAS |

[44]  A. W. Addison, T. N. Rao, J. Reedijk, J. V. Rijn, G. C. Verschoor, J. Chem. Soc., Dalton Trans. 1984, 1349.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL2cXmtVeitb8%3D&md5=6c9542f3267a4f0774f4ff3459a5b808CAS |

[45]  M. Du, C. P. Li, C. S. Liu, S. M. Fang, Coord. Chem. Rev.

[46]  M. D. Allendorf, C. A. Bauer, R. K. Bhakta, R. J. T. Houk, Chem. Soc. Rev. 2009, 38, 1330.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXkvVamurg%3D&md5=b9af394ddf4e2d27aa4e63c2518eef04CAS |

[47]  F. Bentiss, M. Lagrenee, J. Heterocycl. Chem. 1999, 36, 1029.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1MXms1WrtLk%3D&md5=9c8098cbc9649396b9d956fa2c20b241CAS |

[48]  SAINT Software Reference Manual 1998 (Bruker AXS: Madison, WI).

[49]  G. M. Sheldrick, SHELXTL NT Version 5.1., Program for Solution and Refinement of Crystal Structures 1997 (University of Göttingen: Göttingen).