Free Standard AU & NZ Shipping For All Book Orders Over $80!
Register      Login
Australian Journal of Chemistry Australian Journal of Chemistry Society
An international journal for chemical science
RESEARCH ARTICLE

Effects of Ni Particle Size on Hydrogen Storage of Ni-Doped High Surface Area Activated Carbon

Lufeng Yang A , Chunlin Xie A , Chaofan Hu A , Mingtao Zheng B , Haibo Wang A , Jianghu Cui A , Yong Xiao B , Bingfu Lei B , Yingliang Liu B D and Lixian Sun C D
+ Author Affiliations
- Author Affiliations

A Department of Chemistry and Institute of Nanochemistry, Jinan University, Guangzhou 510632, China.

B College of Science, South China Agricultural University, Guangzhou 510642, China.

C Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China.

D Corresponding authors. Email: tliuyl@163.com; lxsun@dicp.ac.cn

Australian Journal of Chemistry 66(5) 548-554 https://doi.org/10.1071/CH12460
Submitted: 7 October 2012  Accepted: 20 December 2012   Published: 16 January 2013

Abstract

A type of activated carbon that is further chemically activated to obtain a high surface area (~3322 m2 g–1) (hsAC), is loaded with nickel nanoparticles by a direct hydrothermal method, and tested for hydrogen storage. The chemical composition, crystal structure, and microstructure of hsAC with or without Ni loading are characterised in addition to the nitrogen absorbance isotherms. Hydrogen storage studies showed that metal doping has no effect on the cryogenic storage, and the maximum room temperature (RT) storage capacity through spillover on the Ni-doped hsAC materials achieved 0.79 wt-% at 30 Pa with enhancement factors of 2.93. The smaller catalyst size was a critical factor that determined the enhancement of RT storage capacity of the materials. The Ni catalyst size was controlled by the doped Ni content. Tuning the Ni catalyst size together with an optimum carbon spillover receptor should play an effective role in further enhancement by the spillover effect.


References

[1]  I. Jain, C. Lal, A. Jain, Int. J. Hydrogen Energy 2010, 35, 5133.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXlt1eqtrY%3D&md5=10761069a6e2acfd311c8dd2d9be343aCAS |

[2]  L. Schlapbach, A. Züttel, Nature 2001, 414, 353.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3MXovFGitrk%3D&md5=3671af0e5f8c0aeb8f4b6859670f28b4CAS |

[3]  (a) U. Eberle, M. Felderhoff, F. Schüth, Angew. Chem. Int. Ed. 2009, 48, 6608.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXhtVGrtrfP&md5=da685b8d5174a2b35a315f6f0e0ec60dCAS |
      (b) R. Bardhan, A. M. Ruminski, A. Brand, J. J. Urban, Energ. Environ. Sci. 2011, 4, 4882.
         | Crossref | GoogleScholarGoogle Scholar |
      (c) H. Reardon, J. M. Hanlon, R. W. Hughes, A. Godula-Jopek, T. K. Mandal, D. H. Gregory, Energ. Environ. Sci. 2012, 5, 5951.
         | Crossref | GoogleScholarGoogle Scholar |
      (d) B. Sakintuna, F. Lamari-Darkrim, M. Hirscher, Int. J. Hydrogen Energy 2007, 32, 1121.
         | Crossref | GoogleScholarGoogle Scholar |

[4]  (a) L. J. Murray, M. Dincă, J. R. Long, Chem. Soc. Rev. 2009, 38, 1294.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXkvVamuro%3D&md5=f5f8c1034809909f5d2f8d044e3cdab1CAS |
      (b) L. Wang, R. T. Yang, Energ. Environ. Sci. 2008, 1, 268.
         | Crossref | GoogleScholarGoogle Scholar |
      (c) H. Wang, Q. Gao, J. Hu, Z. Chen, Carbon 2009, 47, 2259.
         | Crossref | GoogleScholarGoogle Scholar |

[5]  (a) P. Kowalczyk, R. Hołyst, M. Terrones, H. Terrones, Phys. Chem. Chem. Phys. 2007, 9, 1786.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXjvVGqurw%3D&md5=70ab07f303ae4b0012e8d4bcf4018980CAS |
      (b) R. Ströbel, J. Garche, P. Moseley, L. Jörissen, G. Wolf, J. Power Sources 2006, 159, 781.
         | Crossref | GoogleScholarGoogle Scholar |

[6]  (a) L. Wang, R. T. Yang, J. Phys. Chem. C 2008, 112, 12486.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXoslKmtL4%3D&md5=6ff45743a146b64aed28bbeaf3d3334dCAS |
      (b) D. Saha, S. Deng, Langmuir 2009, 25, 12550.
         | Crossref | GoogleScholarGoogle Scholar |
      (c) V. Jiménez, A. Ramírez-Lucas, P. Sánchez, J. L. Valverde, A. Romero, Int. J. Hydrogen Energy 2012, 37, 4144.
         | Crossref | GoogleScholarGoogle Scholar |

[7]  (a) Z. Wang, R. T. Yang, J. Phys. Chem. C 2010, 114, 5956.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXivV2murk%3D&md5=756b5c96c768301d0e3d7d52e3f8cffbCAS |
      (b) L. Wang, N. R. Stuckert, H. Chen, R. T. Yang, J. Phys. Chem. C 2011, 115, 4793.
         | Crossref | GoogleScholarGoogle Scholar |

[8]  Z. Yang, Y. Xia, R. Mokaya, J. Am. Chem. Soc. 2007, 129, 1673.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXot1Whtw%3D%3D&md5=f4d16bbe85be640c22281143a6d9e166CAS |

[9]  H. Wang, Q. Gao, J. Hu, J. Am. Chem. Soc. 2009, 131, 7016.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXlt1Cmu7o%3D&md5=930dc3342d8a2c87ce4a3156c8d49852CAS |

[10]  (a) Y. Yamamoto, N. Nawa, S. Nishimoto, Y. Kameshima, M. Matsuda, M. Miyake, Int. J. Hydrogen Energy 2011, 36, 5739.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXkvVamtr8%3D&md5=e19a83214908c35ffb4385257ba98af8CAS |
      (b) K. Y. Lin, W. T. Tsai, T. J. Yang, J. Power Sources 2011, 196, 3389.
         | Crossref | GoogleScholarGoogle Scholar |
      (c) S. Giraudet, Z. Zhu, Carbon 2011, 49, 398.
         | Crossref | GoogleScholarGoogle Scholar |

[11]  C. S. Tsao, Y. R. Tzeng, M. S. Yu, C. Y. Wang, H. H. Tseng, T. Y. Chung, H.-C. Wu, T. Yamamoto, K. Kaneko, S.-H. Chen, J. Phys. Chem. Lett. 2010, 1, 1060.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXivV2mu70%3D&md5=e71edea8bc7604278141d137f82fdb16CAS |

[12]  (a) J. Skowroński, P. Krawczyk, Solid State Ion. 2010, 181, 653.
         | Crossref | GoogleScholarGoogle Scholar |
      (b) J. Zhou, J. He, T. Wang, X. Ding, D. Wang, Z. Di, J. Porous Mater. 2012, 19, 53.
         | Crossref | GoogleScholarGoogle Scholar |

[13]  C. M. Yang, C. Weidenthaler, B. Spliethoff, M. Mayanna, F. Schüth, Chem. Mater. 2005, 17, 355.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXhtVCntbjN&md5=04a78a791a5de0c35086e3a9ca30179cCAS |

[14]  (a) M. Zieliński, R. Wojcieszak, S. Monteverdi, M. Mercy, M. Bettahar, Catal. Commun. 2005, 6, 777.
         | Crossref | GoogleScholarGoogle Scholar |
      (b) R. Wojcieszak, M. Zieliński, S. Monteverdi, M. Bettahar, J. Colloid Interface Sci. 2006, 299, 238.
         | Crossref | GoogleScholarGoogle Scholar |

[15]  C. Adams, H. Benesi, R. Curtis, R. Meisenheimer, J. Catal. 1962, 1, 336.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaF2cXhtlCnsw%3D%3D&md5=7835b565ca66a4ac8b2b476f0d85eeb0CAS |

[16]  M. Sevilla, R. Foulston, R. Mokaya, Energ. Environ. Sci. 2010, 3, 223.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXnvVahs7w%3D&md5=a65bbac9b2671396bf2c73225ea9ea48CAS |

[17]  (a) M. Zieliński, R. Wojcieszak, S. Monteverdi, M. Mercy, M. Bettahar, Int. J. Hydrogen Energy 2007, 32, 1024.
         | Crossref | GoogleScholarGoogle Scholar |
      (b) L. Zubizarreta, J. Menéndez, J. Pis, A. Arenillas, Int. J. Hydrogen Energy 2009, 34, 3070.
         | Crossref | GoogleScholarGoogle Scholar |