A Two-Stage Continuous-Flow Synthesis of Spirooxazine Photochromic Dyes
Mark York A B C D and Adriana Edenharter AA CSIRO Materials Science and Engineering, Clayton, Vic. 3169, Australia.
B Cooperative Research Centre for Polymers, Notting Hill, Vic. 3168, Australia.
C Advanced Polymerik Pty Ltd, Notting Hill, Vic. 3168, Australia.
D Corresponding author. Email: mark.york@csiro.au
Australian Journal of Chemistry 66(2) 172-177 https://doi.org/10.1071/CH12435
Submitted: 25 September 2012 Accepted: 9 November 2012 Published: 28 November 2012
Abstract
A continuous-flow process for the synthesis of several known and previously unreported spirooxazine photochromic dyes is reported. The process proceeds via an initial copper catalysed addition of substituted anilines to naphthalene-1,2-dione. This is followed by reaction with 1,3,3-trimethyl-2-methyleneindoline in the presence of hydroxylamine hydrochloride to give the desired spirooxazine products. The photochromic dyes were then cast into lenses to allow a preliminary evaluation of their properties.
References
[1] J. Yoshida, H. Kim, A. Nagaki, ChemSusChem 2011, 4, 331.| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXjtV2lt7k%3D&md5=f18aa1068233e8c47ef7fd4d50b77bb1CAS |
[2] D. Webb, T. F. Jamison, Chem. Sci. 2010, 1, 675.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXhsVGrtLs%3D&md5=0a1d1aaeacc075934edc50686b9b69ffCAS |
[3] J. Wegner, S. Ceylan, A. Kirschning, Chem. Commun. 2011, 47, 4583.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXktF2nsbk%3D&md5=547e0701b180bddbc930bb4f3c07fac7CAS |
[4] V. Lokshin, A. Samat, A. V. Metelitsa, Russ. Chem. Rev. 2002, 71, 893.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXivVSntLY%3D&md5=a359aa1a23da1b31f0eb648f11de325cCAS |
[5] H. Bouas-Laurent, H. Durr, Pure Appl. Chem. 2001, 73, 639.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3MXltVyksrc%3D&md5=5b0c1cb46b71480895b34403a88aeb04CAS |
[6] N. Malic, J. A. Campbell, A. S Ali, M. York, A. D’Souza, R. A. Evans, Macromolecules 2010, 43, 8488.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXhtFygtrbP&md5=5b26877140088d3be2d3cff6f3d0b8deCAS |
[7] M. York, R. A. Evans, Tetrahedron Lett. 2010, 51, 2195.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXjslSnur8%3D&md5=7f539ddd0b21eab1ff980a74ff00cbe8CAS |
[8] M. York, Tetrahedron Lett. 2012, 53, 2226.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XjvVWnu78%3D&md5=fceaa2531623cad5727a102069b89509CAS |
[9] M. York, R. A. Evans, Synth. Commun. 2010, 40, 3618.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXhtl2ltrzN&md5=08728ea02f7de888e494f31f756a7762CAS |
[10] D. A. Clarke, B. M. Heron, C. D. Gabbutt, J. D. Hepworth, S. M. Partington, S. N. Corns, U. S. Patent 6 303 673 2001.
[11] M. Rickwood, S. D. Marsden, V. E. Askew, U. S. Patent 5 446 150 1995.
[12] A mixture of sodium 1,2-naphthoquinone-4-sulfonate (0.3 g, 1.153 mmol) and N,N,3,5-tetramethylaniline (0.17 g, 1.153 mmol) in 20 % aqueous methanol (8.5 mL) was stirred for 72 h at room temperature. Analysis of the mixture showed none of the desired product had formed.
[13] Y. Ooyama, T. Okamoto, T. Yamaguchi, T. Suzuki, A. Hayashi, K. Yoshida, Chem. – Eur. J. 2006, 12, 7827.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XhtFKntL7I&md5=0de5f17cb8db245981f6a93a0d980b60CAS |
[14] Y. Ooyama, S. Nagano, K. Yoshida, Tetrahedron 2009, 65, 1467.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXptl2nuw%3D%3D&md5=0c82f77d5d4549717a63ad023bad25daCAS |
[15] Y. Ooyama, Y. Kagawa, Y. Harima, Eur. J. Org. Chem. 2007, 3613.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXptVGqtL0%3D&md5=24edb3543fb31e33916d0f8c181dbc71CAS |
[16] www.vapourtec.co.uk.
[17] P. R. de Oliveira, D. S. Ribeiro, R. Rittner, J. Phys. Org. Chem. 2005, 18, 513.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXksFylsLs%3D&md5=98505409e0a7cdcc58b81f09cf158897CAS |
[18] H. Ahlbrecht, E. O. Dueber, J. Epsztajn, R. M. K. Martcinowski, Tetrahedron 1984, 40, 1157.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL2cXkslWrurc%3D&md5=6202ccd0d92723b7c9fddbd7ca4c28e5CAS |