Water-Assisted Organocatalysis: An Enantioselective Green Protocol for the Henry Reaction
Prashant B. Thorat A , Santosh V. Goswami A , Wamanrao N. Jadhav A and Sudhakar R. Bhusare A BA Department of Chemistry, Dnyanopasak College, Parbhani-431 401, Maharashtra State, India.
B Corresponding author. Email: bhusare71@yahoo.com
Australian Journal of Chemistry 66(6) 661-666 https://doi.org/10.1071/CH12428
Submitted: 19 September 2012 Accepted: 14 March 2013 Published: 5 April 2013
Abstract
We report an enantioselective Henry (nitroaldol) reaction catalysed by an organocatalyst using water as solvent. The enantioselective synthesis of β-nitroalcohols was achieved by using a neutral chiral organocatalyst, through strong hydrogen bonding, which results in the formation of corresponding products in excellent yield and enantioselectivity at room temperature. Other attractive features of the method are the eco-friendly, non-hazardous, and mild reaction conditions, inexpensive catalyst, and simple work up conditions.
References
[1] (a) L. Henry, Compt. Rend. Hebd. Seances Acad. Sci. 1895, 120, 1265.| 1:CAS:528:DyaD28Xos1Cqsg%3D%3D&md5=9f1fcbf6a2d546c950dbb6973e9357fdCAS |
(b) G. Rosini, in Comprehensive Organic Synthesis (Eds B. M. Trost, C. H. Heathcock) 1991, Vol. 2, 321–340 (Pergamon: Oxford).
(c) N. Ono, The Nitro Group in Organic Synthesis 2001 Ch. 3, p. 30 (Wiley VCH: New York, NY).
[2] B. R. Linton, M. H. Reutershan, M. Aderman, E. A. Richardson, K. R. Brownell, C. W. Ashley, C. A. Evans, S. J. Miller, Tetrahedron Lett. 2007, 48, 1993.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXhvVOrtrs%3D&md5=7c4b348b62b598ee96acd42ce23352cfCAS |
[3] M. Shibasaki, H. Sasai, T. Arai, Angew. Chem. Int. Ed. 1997, 36, 1236.
| Crossref | GoogleScholarGoogle Scholar |
[4] (a) C. Palomo, M. Oiarbide, A. Laso, Angew. Chem. 2005, 117, 3949.
| Crossref | GoogleScholarGoogle Scholar |
(b) C. Palomo, M. Oiarbide, A. Laso, Angew. Chem. Int. Ed. 2005, 44, 3881.
| Crossref | GoogleScholarGoogle Scholar |
(c) S. Liu, C. Wolf, Org. Lett. 2008, 10, 1831.
| Crossref | GoogleScholarGoogle Scholar |
(d) A. Bulut, A. Aslan, O. Dogan, J. Org. Chem. 2008, 73, 7373.
| Crossref | GoogleScholarGoogle Scholar |
[5] (a) T. Arai, N. Yokoyama, A. Yanagisawa, Chem. – Eur. J. 2008, 14, 2052.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXkvFKhtLs%3D&md5=18116fcc26f2199bb4f5ec3dbaa7a226CAS | 18186090PubMed |
(b) G. Q. Zhang, E. Yashima, W. D. Woggon, Adv. Synth. Catal. 2009, 351, 1255.
| Crossref | GoogleScholarGoogle Scholar |
(c) C. Gan, G. Lai, Z. Zhang, Z. Wang, M. M. Zhou, Tetrahedron: Asymmetry 2006, 17, 725.
| Crossref | GoogleScholarGoogle Scholar |
[6] (a) S. Selvakumar, D. Sivasankaran, V. K. Singh, Org. Biomol. Chem. 2009, 7, 3156.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXosFSrurw%3D&md5=5197d237312a9f64e176191c0b221e6fCAS |
(b) M. Breuning, D. Hein, M. Steiner, V. H. Gessner, C. Strohmann, Chem. – Eur. J. 2009, 15, 12764.
| Crossref | GoogleScholarGoogle Scholar |
(c) A. Noole, K. Lippur, A. Metsala, M. Lopp, T. Kanger, J. Org. Chem. 2010, 75, 1313.
| Crossref | GoogleScholarGoogle Scholar |
[7] Y. Kogami, T. Nakajima, T. Ashizawa, S. Kezuka, T. Ikeno, T. Yamada, Chem. Lett. 2004, 33, 614.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXktFelt7s%3D&md5=331e402495ac0e3036e476f5dca9e0daCAS |
[8] B. M. Choudary, K. V. S. Ranganath, U. Pal, M. L. Kantam, B. Sreedhar, J. Am. Chem. Soc. 2005, 127, 13167.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXpsFaku7g%3D&md5=14e40174c6233b1a3a2c4f12afe34f0eCAS | 16173743PubMed |
[9] (a) R. Kowalczyk, P. Kwiatkowski, J. Skarzewski, J. Jurczak, J. Org. Chem. 2009, 74, 753.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXhsVOmtr3O&md5=7996c377893416103b49aa176465f42bCAS | 19132945PubMed |
(b) A. Zulauf, M. Mellah, E. Schulz, J. Org. Chem. 2009, 74, 2242.
| Crossref | GoogleScholarGoogle Scholar |
[10] N. H. Khan, M. B. Ansari, E. A. Prasetyanto, H. Jin, S. E. Park, Tetrahedron: Asymmetry 2011, 22, 117.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXit1Kntrk%3D&md5=6e6065fd7471acb86005d6706064680fCAS |
[11] (a) H. M. Li, B. M. Wang, L. Deng, J. Am. Chem. Soc. 2006, 128, 732.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXhtlars7jL&md5=3e9b134eefb939625d190963ed3303d1CAS |
(b) T. Marcelli, R. N. S. van der Haas, J. H. van Maarseveen, H. Hiemstra, Angew. Chem. 2006, 118, 943.
| Crossref | GoogleScholarGoogle Scholar |
(c) T. Marcelli, R. N. S. van der Haas, J. H. van Maarseveen, H. Hiemstra, Angew. Chem. Int. Ed. 2006, 45, 929.
| Crossref | GoogleScholarGoogle Scholar |
[12] (a) Y. Sohtome, Y. Hashimoto, K. Nagasawa, Eur. J. Org. Chem. 2006, 2894.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XntVequrg%3D&md5=e9e32a80ab9adeb4b441296122f37606CAS |
(b) T. Mandal, S. Samanta, C. G. Zhao, Org. Lett. 2007, 9, 943.
| Crossref | GoogleScholarGoogle Scholar |
(c) D. Uraguchi, S. Sakaki, T. Ooi, J. Am. Chem. Soc. 2007, 129, 12392.
| Crossref | GoogleScholarGoogle Scholar |
[13] B. M. Trost, V. S. C. Yeh, Angew. Chem. Int. Ed. 2002, 41, 861.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38XisVahsbg%3D&md5=7266ef29edff14eee9396a46eece858eCAS |
[14] B. Zheng, M. Wang, Z. Li, Q. Bian, J. Mao, S. Li, S. Liu, M. Wang, J. Zhong, H. Guo, Tetrahedron: Asymmetry 2011, 22, 1156.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXhtV2ru7jK&md5=c7d675113bcfce23c11857b40fa4d329CAS |
[15] T. Nitabaru, N. Kumagai, M. Shibasaki, Tetrahedron Lett. 2008, 49, 272.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXhsVentb7F&md5=1e7b97072a3b6c85633f497d795100ceCAS |
[16] (a) P. A. Grieco, Organic Synthesis in Water 1998 (Blackie Academic and Professional: London).
(b) C. J. Li, T. H. Chan, Organic Reactions in Aqueous Media 1997 (John Wiley & Sons: New York, NY).
(c) U. M. Lindstrom, Chem. Rev. 2002, 102, 2751.
| Crossref | GoogleScholarGoogle Scholar |
[17] T. Risgaard, K. V. Gothelf, K. A. Jorgensen, Org. Biomol. Chem. 2003, 1, 153.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXitlCgtrs%3D&md5=5921c48c565e306544277a22192d827aCAS | 12929403PubMed |
[18] Y. J. An, Y. X. Zhang, Y. Wu, Z. A. Liu, C. Pi, J. C. Tao, Tetrahedron: Asymmetry 2010, 21, 688.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXntVynsbo%3D&md5=ecc7fff74be94d8b7e765b2fc0024c27CAS |
[19] (a) Y. Wu, Y. Zhang, M. Yu, G. Zhao, S. Wang, Org. Lett. 2006, 8, 4417.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XptVyltbc%3D&md5=9d20ec788120b9fb2c9432fa6d2af43cCAS | 16986914PubMed |
(b) V. Maya, M. Raj, V. K. Singh, Org. Lett. 2007, 9, 2593.
| Crossref | GoogleScholarGoogle Scholar |
[20] (a) S. Guizzetti, M. Benaglia, L. Raimondi, G. Celentono, Org. Lett. 2007, 9, 1247.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXitVyhsL0%3D&md5=db11524f816c35b3a851225c31c3526dCAS | 17323961PubMed |
(b) D. E. Siyutkin, A. S. Kucherenko, M. I. Struchkova, S. G. Zlotin, Tetrahedron Lett. 2008, 49, 1212.
| Crossref | GoogleScholarGoogle Scholar |
[21] (a) A. Cordova, W. Notz, C. F. Barbas, Chem. Commun. 2002, 3024.
| 1:CAS:528:DC%2BD38XptFOlsL4%3D&md5=a97b10fc35fd801a4ca9b72fe0e84e3eCAS |
(b) K. A. Sakthivel, W. Notz, T. Buiand, C. F. Barbas, J. Am. Chem. Soc. 2001, 123, 5260.
| Crossref | GoogleScholarGoogle Scholar |
[22] L. S. Zu, H. X. Xie, H. X. Li, J. Wang, W. Wang, Org. Lett. 2008, 10, 1211.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXitVamsLg%3D&md5=2abfb1d051ade8359112aac1f29537e1CAS |
[23] (a) S. Luo, X. Mi, S. Liu, H. Xu, J. P. Cheng, Chem. Commun. 2006, 3687.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XoslGktL8%3D&md5=fba37df05c5399ee916f0946ec904e45CAS |
(b) D. Font, C. Jimeno, M. A. Pericas, Org. Lett. 2006, 8, 4653.
| Crossref | GoogleScholarGoogle Scholar |
[24] M. T. Robak, M. A. Herbage, J. A. Ellman, Chem. Rev. 2010, 110, 3600.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXltFChsbs%3D&md5=c8ada1a66930595e83b506838abf2978CAS | 20420386PubMed |
[25] F. Ferreira, C. Botuha, F. Chemla, A. Perez-Luna, Chem. Soc. Rev. 2009, 38, 1162.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXjsFaisrw%3D&md5=aeaa98bb4b9e91a97f86dfe47ff86a54CAS | 19421587PubMed |
[26] D. Morton, R. A. Stockman, Tetrahedron 2006, 62, 8869.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XotlSjurg%3D&md5=07be35a38a7a1b511f4a36249df42527CAS |
[27] P. Zhou, B. C. Chen, F. A. Davis, Tetrahedron 2004, 60, 8003.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXms1yqtLg%3D&md5=0caaf1fc3cff66a5bbbe7d4b0424ad0cCAS |
[28] M. Sigman, E. N. Jacobsen, J. Am. Chem. Soc. 1998, 120, 4901.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1cXis12qtbw%3D&md5=e6cf59e0a8402d0d459b266008b3a780CAS |
[29] E. J. Corey, M. J. Grogan, Org. Lett. 1999, 1, 157.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1MXjt1aqtLo%3D&md5=8d0c542c3da31d058fcf2679381b609bCAS | 10822552PubMed |
[30] (a) P. B. Thorat, S. V. Goswami, B. C. Khade, S. R. Bhusare, Tetrahedron Lett. 2012, 53, 6083.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38Xhtl2qt7fP&md5=2fad83664bce09357c0f3c45c4ca0786CAS |
(b) P. B. Thorat, S. V. Goswami, B. C. Khade, S. R. Bhusare, Tetrahedron: Asymmetry 2012, 23, 1320.
| Crossref | GoogleScholarGoogle Scholar |
[31] (a) S. Syu, T. Kao, W. Lin, Tetrahedron 2010, 66, 891.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXhs1SqtL%2FI&md5=e5128d0cb3865c4e3a3a2018f693f632CAS |
(b) M. F. A. Adamo, S. Suresh, Tetrahedron 2009, 65, 990.
| Crossref | GoogleScholarGoogle Scholar |
(c) D. Xin, Y. Ma, F. He, Tetrahedron: Asymmetry 2010, 21, 333.
| Crossref | GoogleScholarGoogle Scholar |
[32] (a) H. Sasai, T. Suzuki, S. Arai, T. Arai, M. Shibasaki, J. Am. Chem. Soc. 1992, 114, 4418.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK38XisFCqsrY%3D&md5=f29307bac860798f87510b9cd10196e8CAS |
(b) R. Chinchilla, C. Najera, P. S. Agullo, Tetrahedron: Asymmetry 1994, 5, 1393.
| Crossref | GoogleScholarGoogle Scholar |
(c) R. Ballini, G. Bosica, P. Forconi, Tetrahedron 1996, 52, 1677.
| Crossref | GoogleScholarGoogle Scholar |
(d) D. Simoni, F. P. Invidiata, S. Manfredini, R. Ferroni, I. Lampronti, M. Roberti, G. P. Pollini, Tetrahedron Lett. 1997, 38, 2749.
| Crossref | GoogleScholarGoogle Scholar |
[33] (a) J. G. Hernandez, E. Juaristi, J. Org. Chem. 2011, 76, 1464.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXoslOrtw%3D%3D&md5=1d3392f8ff7741412a3e93b2477e4956CAS | 21250720PubMed |
(b) J. G. Hernandez, E. Juaristi, Tetrahedron 2011, 67, 6953.
| Crossref | GoogleScholarGoogle Scholar |
(c) Z. Jiang, Z. Liang, X. Wu, Y. Lu, Chem. Commun. 2006, 2801.
| Crossref | GoogleScholarGoogle Scholar |
(d) Z. Jiang, H. Yang, X. Han, J. Luo, M. W. Wong, Y. Lu, Org. Biomol. Chem. 2010, 8, 1368.
| Crossref | GoogleScholarGoogle Scholar |
[34] R. Kowalczyk, L. Sidorowicz, J. Skarzewski, Tetrahedron: Asymmetry 2007, 18, 2581.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXhtlKrsr7K&md5=aacf606071860adb3e5fe8e8466be656CAS |
[35] (a) K. Dhahagani, J. Rajesh, R. Kannan, G. Rajagopal, Tetrahedron: Asymmetry 2011, 22, 857.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXosFeisrk%3D&md5=179b224fe4f91941365bd0cee83a6e82CAS |
(b) N. Sanjeevakumar, M. Periasamy, Tetrahedron: Asymmetry 2009, 20, 1842.
| Crossref | GoogleScholarGoogle Scholar |
(c) G. Lai, S. Wang, Z. Wang, Tetrahedron: Asymmetry 2008, 19, 1813.
| Crossref | GoogleScholarGoogle Scholar |
[36] (a) X. G. Liu, J. J. Jianga, M. Shi, Tetrahedron: Asymmetry 2007, 18, 2773.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXhsVWjsrfL&md5=9881da33f47bdc0f8700c356cb8a3d1dCAS |
(b) B. V. S. Reddy, S. M. Reddy, M. Swain, M. Chinnala, Tetrahedron: Asymmetry 2011, 22, 530.
| Crossref | GoogleScholarGoogle Scholar |