Free Standard AU & NZ Shipping For All Book Orders Over $80!
Register      Login
Australian Journal of Chemistry Australian Journal of Chemistry Society
An international journal for chemical science
RESEARCH FRONT

Surface Composition of Mixtures of Ethylammonium Nitrate, Ethanolammonium Nitrate, and Water

Deborah Wakeham A , Daniel Eschebach A B , Grant B. Webber B , Rob Atkin A B and Gregory G. Warr C D
+ Author Affiliations
- Author Affiliations

A Centre for Organic Electronics, The University of Newcastle, Callaghan, NSW 2308, Australia.

B Centre for Advanced Particle Processing, The University of Newcastle, Callaghan, NSW 2308, Australia.

C School of Chemistry, The University of Sydney, NSW 2006, Australia.

D Corresponding author. Email: gregory.warr@sydney.edu.au

Australian Journal of Chemistry 65(11) 1554-1556 https://doi.org/10.1071/CH12374
Submitted: 8 August 2012  Accepted: 7 September 2012   Published: 24 October 2012

Abstract

Surface tensiometry of binary mixtures of ethylammonium nitrate (EAN), ethanolammonium nitrate (EtAN), and water reveals distinctive amphiphilic character for the ethylammonium cation, but not for ethanolammonium. Results also show that the surface film incorporates nitrate counterions, and that electrostatic and H-bonding interactions, rather than alkyl chain packing, determines the saturated adsorbed film structure and limiting molecular area.


References

[1]  J. W. Gibbs, The Collected Works of J.W. Gibbs, 1931, Vol. 1 (Longmans, Green: New York, NY).

[2]  R. K. Schofield, E. K. Rideal, Proc. R. Soc. Lond. A 1925, 109, 57.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaB2MXis1aksQ%3D%3D&md5=0311aaf463d561601aa1cf87b43271acCAS |

[3]  W. D. Harkins, H. M. McLaughlin, J. Am. Chem. Soc. 1925, 47, 2083.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaB2MXitlChtg%3D%3D&md5=8394a5d2feeffc26ec6f952619df68b8CAS |

[4]  L. Hsiao, H. N. Dunning, P. B. Lorenz, J. Phys. Chem. 1956, 60, 657.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaG28XnsFyhsg%3D%3D&md5=4b58a75a78f29b04556bd45ab870cdf4CAS |

[5]  J. W. McBain, C. W. Humphreys, J. Phys. Chem. 1932, 36, 300.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaA38Xhtl2qug%3D%3D&md5=99fd5ad3d41b93b4e6c806afbfa69dcbCAS |

[6]  E. Hutchinson, J. Colloid Sci. 1949, 4, 599.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaG3cXhtFyhug%3D%3D&md5=fa953bbed3be807f3cc00ac81d15b8c4CAS |

[7]  Z. X. Li, J. R. Lu, D. A. Styrkas, R. K. Thomas, A. R. Rennie, J. Penfold, Mol. Phys. 1993, 80, 925.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2cXhtFOnt74%3D&md5=f397158cdf126322536112ccf97c250eCAS |

[8]  G. Raina, G. U. Kulkarni, C. N. R. Rao, J. Phys. Chem. A 2001, 105, 10204.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3MXnsF2ks78%3D&md5=b5e738c4d2973a9793142e6e5f1abe30CAS |

[9]  T. Welton, Chem. Rev. 1999, 99, 2071.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1MXkt1artrw%3D&md5=162516de75da8d6812cfbe316e3ff814CAS |

[10]  D. F. Evans, S. H. Chen, G. W. Schriver, E. M. Arnett, J. Am. Chem. Soc. 1981, 103, 481.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL3MXptFenuw%3D%3D&md5=33b00bbf2dd18c7cb79f9ee1138e3291CAS |

[11]  P. Walden, Bull. Acad. Imp. Sci. 1914, 1800.

[12]  S. Gabriel, Berichte 1888, 21, 2664.

[13]  T. L. Greaves, C. J. Drummond, Chem. Rev. 2008, 108, 206.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXhsVCrsb%2FL&md5=f2e6ce4f7b45e1a918ed5d441c795467CAS |

[14]  R. Atkin, G. G. Warr, J. Phys. Chem. B 2008, 112, 4164.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXjtlOjsb0%3D&md5=93be3ce90d56b681b257020489d5c136CAS |

[15]  R. Hayes, S. Imberti, G. G. Warr, R. Atkin, Phys. Chem. Chem. Phys. 2011, 13, 3237.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXhsFymtL4%3D&md5=c17f6f3111cd6911748fa3ed3c6f070bCAS |

[16]  R. Hayes, S. Imberti, G. G. Warr, R. Atkin, Phys. Chem. Chem. Phys. 2011, 13, 13544.
         | 1:CAS:528:DC%2BC3MXptVyrs78%3D&md5=bdcc851d643053f05b5f32d600e44e99CAS |

[17]  Y. Umebayashi, W. Chung, T. Mitsugi, S. Fukuda, M. Takeuchi, K. Fujii, T. Takamuku, R. Kanzaki, S. Ishiguro, J. Comput. Chem. Jpn. 2008, 7, 125.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXpt12jsg%3D%3D&md5=19e7184616a7b23d23279b42915e82eeCAS |

[18]  T. L. Greaves, D. F. Kennedy, S. T. Mudie, C. J. Drummond, J. Phys. Chem. B 2010, 114, 10022.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXptVSmuro%3D&md5=e6155360749533a08a5d2b8690f93fb0CAS |

[19]  P. Niga, D. Wakeham, A. Nelson, G. G. Warr, M. W. Rutland, R. Atkin, Langmuir 2010, 26, 8282.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXjs1OitLs%3D&md5=7b964dfa2d9175a9a8c31351d4263d05CAS |

[20]  E. Sloutskin, B. M. Ocko, L. Tamam, I. Kuzmenko, T. Gog, M. Deutsch, J. Am. Chem. Soc. 2005, 127, 7796.
         | Crossref | GoogleScholarGoogle Scholar |

[21]  J. Bowers, M. C. Vergara-Gutierrez, J. R. P. Webster, Langmuir 2004, 20, 309.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXps1GlsLY%3D&md5=910d6033fda002c59326a5e31677fe35CAS |

[22]  S. Rivera-Rubero, S. Baldelli, J. Phys. Chem. B 2006, 110, 4756.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XhtlertLY%3D&md5=c7165564cb3d093af8970579d93c45bcCAS |

[23]  R. M. Lynden-Bell, M. G. Del Popolo, Phys. Chem. Chem. Phys. 2006, 8, 949.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XhsVKqsLs%3D&md5=0172f02c82d03ee80ea140d6f37d5286CAS |

[24]  J. Wang, H. Jiang, Y. Liu, Y. Hua, J. Chem. Thermodyn. 2011, 43, 800.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXitFahtb8%3D&md5=008fc761def287fc03137cf725f16256CAS |

[25]  D. F. Evans, A. Yamauchi, R. Roman, E. Z. Casassa, J. Colloid Interface Sci. 1982, 88, 89.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL38XktFahtbs%3D&md5=fe050233b715d3a8fde68f2a4caef0a6CAS |

[26]  R. Atkin, G. G. Warr, J. Phys. Chem. C 2007, 111, 5162.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXislKrs74%3D&md5=9a5ef68e95d615d00fc933b8a5278d77CAS |

[27]  D. F. Kennedy, C. J. Drummond, J. Phys. Chem. B 2009, 113, 5690.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXjvFKksLo%3D&md5=8ef9421452c152eb6682b4dbc9166490CAS |

[28]  Y. F. Yano, J. Colloid Interface Sci. 2005, 284, 255.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXhvFygtr4%3D&md5=883e94bef3ba188386bb070f9d975f8fCAS |

[29]  M. Allen, D. F. Evans, R. Lumry, J. Solution Chem. 1985, 14, 549.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL2MXls1Oiurw%3D&md5=c43d1d65835404a44f9920bc057109a4CAS |

[30]  R. Hayes, S. Imberti, G.G. Warr, R. Atkin, Angew. Chem. Int. Ed. 2012, 51, 7468.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38Xos1altbo%3D&md5=a25a12526aa19a8eb3bb14d8196eeb36CAS |