A Dynamic Route to Structure and Function: Recent Advances in Imine-Based Organic Nanostructured Materials*
Yi Liu A C and Zhan-Ting Li B CA The Molecular Foundry, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA.
B Department of Chemistry, Fudan University, Shanghai 200433, P. R. China.
C Corresponding authors. Email: yliu@lbl.gov; ztli@fudan.edu.cn
Yi Liu is a staff scientist at the Molecular Foundry, Lawrence Berkeley National Laboratory. He obtained his Ph.D. in chemistry in 2004 from the University of California, Los Angeles, under the direction of Sir J. Fraser Stoddart. After finishing his post-doctoral research with Professor K. Barry Sharpless at the Scripps Research Institute, he joined the Foundry in 2006 as an independent principal investigator. His research interests focus on the development of nanostructured materials through the design, synthesis, and manipulation of tailor-made electron donors and acceptors. |
Zhan-Ting Li obtained his Ph.D. under the direction of Professor Qing-Yun Chen at the Shanghai Institute of Organic Chemistry in 1992. He conducted his post-doctoral research with Professor Jan Becher at the University of South Denmark and with Professor Steven C. Zimmerman at the University of Illinois at Urbana-Champaign. He is currently a professor in the Chemistry Department of Fudan University. His research areas are mainly in biomimetic structures, molecular recognition and self-assembly, and conjugated and porous supramolecular structures. |
Australian Journal of Chemistry 66(1) 9-22 https://doi.org/10.1071/CH12349
Submitted: 24 July 2012 Accepted: 21 September 2012 Published: 17 October 2012
Abstract
The chemistry of imine bond formation from simple aldehyde and amine precursors is among the most powerful dynamic covalent chemistries employed for the construction of discrete molecular objects and extended molecular frameworks. The reversible nature of the C=N bond confers error-checking and proof-reading capabilities in the self-assembly process within a multi-component reaction system. This review highlights recent progress in the self-assembly of complex organic molecular architectures that are enabled by dynamic imine chemistry, including molecular containers with defined geometry and size, mechanically interlocked molecules, and extended frameworks and polymers, from building blocks with preprogrammed steric and electronic information. The functional aspects associated with the nanometer-scale features not only place these dynamically constructed nanostructures at the frontier of materials sciences, but also bring unprecedented opportunities for the discovery of new functional materials.
References
[1] H. Schiff, Liebigs Ann. Chem. 1864, 131, 118.| Crossref | GoogleScholarGoogle Scholar |
[2] S. J. Rowan, S. J. Cantrill, G. R. L. Cousins, J. K. M. Sanders, J. F. Stoddart, Angew. Chem. Int. Ed. 2002, 41, 898.
| Crossref | GoogleScholarGoogle Scholar |
[3] N. M. Rue, J. Sun, R. Warmuth, Isr. J. Chem. 2011, 51, 743.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXhtFSmtbnI&md5=30809cb6ae1fe63757d512eb48b12543CAS |
[4] (a) P. T. Corbett, J. Leclaire, L. Vial, K. R. West, J.-L. Wietor, J. K. M. Sanders, S. Otto, Chem. Rev. 2006, 106, 3652.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XnvVKhsbo%3D&md5=ef2beec5f6542904b58228a28e3fa82aCAS |
(b) S. Otto, K. Severin, Top. Curr. Chem. 2007, 277, 267.
| Crossref | GoogleScholarGoogle Scholar |
(c) R. A. R. Hunt, S. Otto, Chem. Commun. 2011, 47, 847.
| Crossref | GoogleScholarGoogle Scholar |
[5] (a) J.-M. Lehn, Chem. Soc. Rev. 2007, 36, 151.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXhtVKlu74%3D&md5=324f9f6efcaa91e8640d1df0a2b0677aCAS |
(b) C. D. Meyer, C. S. Joiner, J. F. Stoddart, Chem. Soc. Rev. 2007, 36, 1705.
| Crossref | GoogleScholarGoogle Scholar |
(c) M. E. Belowich, J. F. Stoddart, Chem. Soc. Rev. 2012, 41, 2003.
| Crossref | GoogleScholarGoogle Scholar |
[6] (a) D. B. Amabilino, J. F. Stoddart, Chem. Rev. 1995, 95, 2725.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2MXps1Wmu7o%3D&md5=9366aa3a17e47ac0ceab5463fc7e20c9CAS |
(b) R. S. Forgan, J.-P. Sauvage, J. F. Stoddart, Chem. Rev. 2011, 111, 5434.
| Crossref | GoogleScholarGoogle Scholar |
[7] (a) S. R. Seidel, P. J. Stang, Acc. Chem. Res. 2002, 35, 972.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38Xmt1yhs74%3D&md5=01889cf1384fd2029546f29326c993a6CAS |
(b) A. Scarso, J. Rebek, Top. Curr. Chem. 2006, 265, 1.
| Crossref | GoogleScholarGoogle Scholar |
(c) S. J. Dalgarno, N. P. Power, J. L. Atwood, Coord. Chem. Rev. 2008, 252, 825.
| Crossref | GoogleScholarGoogle Scholar |
[8] D. J. Cram, Nature 1992, 356, 29.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK38XhsFSrsb8%3D&md5=33fd2151e073b22ec444a3f6e9fc3480CAS |
[9] S. Rieth, K. Hermann, B.-Y. Wang, J. D. Badjic, Chem. Soc. Rev. 2011, 40, 1609.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXit1KisLo%3D&md5=a184efe9eb89e258ab4501dfaf32558aCAS |
[10] (a) T. S. Koblenz, J. Wassenaar, J. N. H. Reek, Chem. Soc. Rev. 2008, 37, 247.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXmtVGgtg%3D%3D&md5=02f644d12da40bd16811a268eb412ccbCAS |
(b) J. Rebek, Acc. Chem. Res. 2009, 42, 1660.
| Crossref | GoogleScholarGoogle Scholar |
(c) M. Yoshizawa, J. K. Klosterman, M. Fujita, Angew. Chem. Int. Ed. 2009, 48, 3418.
| Crossref | GoogleScholarGoogle Scholar |
[11] R. Chakrabarty, P. S. Mukherjee, P. J. Stang, Chem. Rev. 2011, 111, 6810.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXhtVOnsrbP&md5=6d73e80e48d010d7b2f54417f861c344CAS |
[12] M. L. C. Quan, D. J. Cram, J. Am. Chem. Soc. 1991, 113, 2754.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK3MXisVOhtrY%3D&md5=253c39dc76f44febdd22229b68a9eb74CAS |
[13] (a) X. Liu, Y. Liu, G. Li, R. Warmuth, Angew. Chem. Int. Ed. 2006, 45, 901.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XhsFKms7k%3D&md5=fc9328bd3782e70007b783b110cd3c6eCAS |
(b) X. Liu, R. Warmuth, J. Am. Chem. Soc. 2006, 128, 14120.
| Crossref | GoogleScholarGoogle Scholar |
[14] (a) S. Leininger, B. Olenyuk, P. J. Stang, Chem. Rev. 2000, 100, 853.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3cXotlynsg%3D%3D&md5=bb64c2ba9a0d19e9f2240c2e51e16b03CAS |
(b) M. Fujita, M. Tominaga, A. Hori, B. Therrien, Acc. Chem. Res. 2005, 38, 369.
| Crossref | GoogleScholarGoogle Scholar |
[15] D. J. Tranchemontagne, Z. Ni, M. O’Keeffe, O. M. Yaghi, Angew. Chem. Int. Ed. 2008, 47, 5136.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXos1Gkurs%3D&md5=3eb71303e75e060d8b176a00b46f1000CAS |
[16] J. Sun, R. Warmuth, Chem. Commun. 2011, 47, 9351.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXpvFyktbw%3D&md5=04e5a6d48b1311174f463c38687d3e22CAS |
[17] X. Liu, Y. Liu, R. Warmuth, Supramol. Chem. 2008, 20, 41.
[18] X. Liu, Y. Liu, G. Li, R. Warmuth, Angew. Chem. Int. Ed. 2006, 45, 901.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XhsFKms7k%3D&md5=fc9328bd3782e70007b783b110cd3c6eCAS |
[19] T. Brotin, J.-P. Dutasta, Chem. Rev. 2009, 109, 88.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXhsFals7vI&md5=e8ef3f29000cbc90af5870186b3a12d4CAS |
[20] D. Xu, R. Warmuth, J. Am. Chem. Soc. 2008, 130, 7520.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXmtlWnurw%3D&md5=8c2d948aa905c6994f895ab93c4f8ba6CAS |
[21] (a) M. Mastalerz, Chem. Commun. 2008, 4756.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXhtF2mtr%2FI&md5=b91a7757e92abc6b650ac7b749ef75c6CAS |
(b) M. Mastalerz, M. W. Schneider, I. M. Oppel, O. Presly, Angew. Chem. Int. Ed. 2011, 50, 1046.
| Crossref | GoogleScholarGoogle Scholar |
(c) M. W. Schneider, I. M. Oppel, H. Ott, L. G. Lechner, H.-J. S. Hauswald, R. Stoll, M. Mastalerz, Chem. – Eur. J. 2012, 18, 836.
| Crossref | GoogleScholarGoogle Scholar |
[22] Y. Liu, X. Liu, R. Warmuth, Chem. – Eur. J. 2007, 13, 8953.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXhtlCqtr3O&md5=2231fba6a46c18ae841849c7c6c08b3cCAS |
[23] P. Skowronek, J. Gawronski, Org. Lett. 2008, 10, 4755.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXht1Smtr3M&md5=65f19e7f1963bba9038714ed25453aebCAS |
[24] T. Tozawa, J. T. A. Jones, S. I. Swamy, S. Jiang, D. J. Adams, S. Shakespeare, R. Clowes, D. Bradshaw, T. Hasell, S. Y. Chong, C. Tang, S. Thompson, J. Parker, A. Trewin, J. Bacsa, A. M. Z. Slawin, A. Steiner, A. I. Cooper, Nat. Mater. 2009, 8, 973.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXhsVGlt7vP&md5=0d2605ba0572a4826457a8c03860a44dCAS |
[25] S. Jiang, J. Bacsa, X. Wu, J. T. A. Jones, R. Dawson, A. Trewin, D. J. Adams, A. I. Cooper, Chem. Commun. 2011, 47, 8919.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXpt1Krtb0%3D&md5=ee9a56e9aa2cec96a78bd2bf3f1006d6CAS |
[26] (a) B. Gong, Acc. Chem. Res. 2008, 41, 1376.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXls1Oiu7o%3D&md5=783326fc6fbf5fec5d02195abe1050aeCAS |
(b) W. S. Horne, S. H. Gellman, Acc. Chem. Res. 2008, 41, 1399.
| Crossref | GoogleScholarGoogle Scholar |
(c) Z.-T. Li, J.-L. Hou, C. Li, Acc. Chem. Res. 2008, 41, 1343.
| Crossref | GoogleScholarGoogle Scholar |
[27] X.-N. Xu, L. Wang, G.-T. Wang, J.-B. Lin, G.-Y. Li, X.-K. Jiang, Z.-T. Li, Chem. – Eur. J. 2009, 15, 5763.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXms1ektbg%3D&md5=f525cd97a8353c945838a1aa50965f3dCAS |
[28] X.-N. Xu, L. Wang, Z.-T. Li, Chem. Commun. 2009, 6634.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXhtlalur%2FO&md5=d3b3d9278b145c3f56e8aa9d7b45acbaCAS |
[29] L. Wang, G.-T. Wang, X. Zhao, X.-K. Jiang, Z.-T. Li, J. Org. Chem. 2011, 76, 3531.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXjvV2gtL0%3D&md5=674d6be0ed4a09fdc7c6d9e466501f5fCAS |
[30] (a) S. Anderson, H. L. Anderson, J. K. M. Sanders, Acc. Chem. Res. 1993, 26, 469.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2cXjtValtA%3D%3D&md5=704689fddc8a46f2d7fcc7236e4945f0CAS |
(b) J. F. Stoddart, H.-R. Tseng, Proc. Natl. Acad. Sci. USA 2002, 99, 4797.
| Crossref | GoogleScholarGoogle Scholar |
[31] K. S. Chichak, S. J. Cantrill, A. R. Pease, S. H. Chiu, G. W. V. Cave, J. L. Atwood, J. F. Stoddart, Science 2004, 304, 1308.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXkt1Ggu70%3D&md5=babbb82e94bf7fe4db246c8d478f2161CAS |
[32] C. D. Pentecost, K. S. Chichak, A. J. Peters, G. W. V. Cave, S. J. Cantrill, J. F. Stoddart, Angew. Chem. Int. Ed. 2007, 46, 218.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXisVOmug%3D%3D&md5=d2d023bb40007634af40bb333ba9d8dfCAS |
[33] P. C. Haussmann, J. F. Stoddart, Chem. Rec. 2009, 9, 136.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXltFarsbo%3D&md5=694f5cd09e28adc162fae07b1c6978c8CAS |
[34] L. M. Klivansky, G. Koshkakaryan, D. Cao, Y. Liu, Angew. Chem. Int. Ed. 2009, 48, 4185.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXmsVSisb4%3D&md5=82d13c8287f1212b7b90519b720c0824CAS |
[35] G. Koshkakaryan, D. Cao, L. M. Klivansky, S. J. Teat, J. L. Tran, Y. Liu, Org. Lett. 2010, 12, 1528.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXis1Oqtbo%3D&md5=faa240104f39a31a2436ba1a83518c47CAS |
[36] P. T. Glink, A. I. Oliva, J. F. Stoddart, A. J. P. White, D. J. Williams, Angew. Chem. Int. Ed. 2001, 40, 1870.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3MXjvFyqt74%3D&md5=912960b8c34e85a3d3ba95d52727bc73CAS |
[37] J. Wu, K. C.-F. Leung, J. F. Stoddart, Proc. Natl. Acad. Sci. USA 2007, 104, 17266.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXht1ymtrrF&md5=28a5dace80e82f1ed68d1f07e029fed3CAS |
[38] M. E. Belowich, C. Valente, R. A. Smaldone, D. C. Friedman, J. Thiel, L. Cronin, J. F. Stoddart, J. Am. Chem. Soc. 2012, 134, 5243.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38Xhslals7Y%3D&md5=4b43f06b7f54284ea4b99ea0c140755bCAS |
[39] T. Hasell, X. F. Wu, J. T. A. Jones, J. Bacsa, A. Steiner, T. Mitra, A. Trewin, D. J. Adams, A. I. Cooper, Nat. Chem. 2010, 2, 750.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXhtVGmtbjP&md5=66fac1939917642a23910c1203f0bb23CAS |
[40] J. Tian, P. K. Thallapally, B. P. McGrail, CrystEngComm 2012, 14, 1909.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XisFOktb4%3D&md5=07a97554ab943580a2313cb95867cf1aCAS |
[41] (a) J. R. Holst, A. Trewin, A. I. Cooper, Nat. Chem. 2010, 2, 915.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXhtlWksbvE&md5=0b9924b1106ab6825c319d8a2c1755ceCAS |
(b) M. J. Bojdys, M. E. Briggs, J. T. A. Jones, D. J. Adams, S. Y. Chong, M. Schmidtmann, A. I. Cooper, J. Am. Chem. Soc. 2011, 133, 16566.
| Crossref | GoogleScholarGoogle Scholar |
[42] J. T. A. Jones, T. Hasell, X. F. Wu, J. Bacsa, K. E. Jelfs, M. Schmidtmann, S. Y. Chong, D. J. Adams, A. Trewin, F. Schiffman, F. Cora, B. Slater, A. Steiner, G. M. Day, A. I. Cooper, Nature 2011, 474, 367.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXnsFOrt7g%3D&md5=0ebad9f5b5c33f92285f7db88c4ef606CAS |
[43] Y. Jin, B. A. Voss, R. D. Noble, W. Zhang, Angew. Chem. Int. Ed. 2010, 49, 6348.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXhtVOqtLjE&md5=b9764c7220d493c22edf7d4b877a5583CAS |
[44] Y. Jin, B. A. Voss, A. Jin, H. Long, R. D. Noble, W. Zhang, J. Am. Chem. Soc. 2011, 133, 6650.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXktlOksL4%3D&md5=0963a623281779ce468fc4431ee8da5dCAS |
[45] F. J. Uribe-Romo, J. R. Hunt, H. Furukawa, C. Kloeck, M. O’Keeffe, O. M. Yaghi, J. Am. Chem. Soc. 2009, 131, 4570.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXjtFKlsLs%3D&md5=3135cd112a699245e6843200889b4b94CAS |
[46] F. J. Uribe-Romo, C. J. Doonan, H. Furukawa, K. Oisaki, O. M. Yaghi, J. Am. Chem. Soc. 2011, 133, 11478.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXosFyrs7s%3D&md5=295108090cea000f20c6883d30f4d200CAS |
[47] S.-Y. Ding, J. Gao, Q. Wang, Y. Zhang, W.-G. Song, C.-Y. Su, W. Wang, J. Am. Chem. Soc. 2011, 133, 19816.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXhtlKgs7bL&md5=fb77edeb05cdeabd8c0281e6f4e1d9cfCAS |
[48] P. Pandey, A. P. Katsoulidis, I. Eryazici, Y. Wu, M. G. Kanatzidis, S. T. Nguyen, Chem. Mater. 2010, 22, 4974.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXpslWhtL8%3D&md5=233604d50c8623fa70ed3c55fdf0d3f9CAS |
[49] J. Leclaire, G. Husson, N. Devaux, V. Delorme, L. Charles, F. Ziarelli, P. Desbois, A. Chaumonnot, M. Jacquin, F. Fotiadu, G. Buono, J. Am. Chem. Soc. 2010, 132, 3582.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXitFyhsrk%3D&md5=b42720c02e77bf09c7b9cff2cc210615CAS |
[50] (a) J.-M. Lehn, Aust. J. Chem. 2010, 63, 611.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXksFSgtbw%3D&md5=309e5205c6853fc6a6f322d48391b325CAS |
(b) E. Moulin, G. Cormos, N. Giuseppone, Chem. Soc. Rev. 2012, 41, 1031.
| Crossref | GoogleScholarGoogle Scholar |
[51] H. Deng, M. A. Olson, J. F. Stoddart, O. M. Yaghi, Nat. Chem. 2010, 2, 439.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXmtlWlt7g%3D&md5=5f3d19730596e821c0b7a8376a2afe50CAS |