Synthesis and Self-Assembly of a Peptide–Amphiphile as a Drug Delivery Vehicle
Soo Jung Son A , Margaret A. Brimble A D , Sunghyun Yang A , Paul W. R. Harris A , Tom Reddingius A , Benjamin W. Muir B , Oliver E. Hutt B , Lynne Waddington B , Jian Guan C and G. Paul Savage B DA School of Chemical Sciences, The University of Auckland, 23 Symonds Street, Auckland 1010, New Zealand.
B CSIRO Materials Science and Engineering, Bayview Avenue, Clayton, Vic. 3168, Australia.
C Liggins Institute, Faculty of Medicince, The University of Auckland, 23 Symonds Street, Auckland 1010, New Zealand.
D Corresponding authors. Email: m.brimble@auckland.ac.nz; paul.savage@csiro.au
Australian Journal of Chemistry 66(1) 23-29 https://doi.org/10.1071/CH12347
Submitted: 23 July 2012 Accepted: 9 October 2012 Published: 12 November 2012
Abstract
The formation of functional liposomes by the self assembly of a peptide–amphiphile that comprises the neuroprotective tripeptide motif glycyl-prolyl-glutamic acid linked to a hydrophobic moiety is reported. The self-assembled peptide–lipid conjugate displays long range order and can be dispersed as nanometre sized particles.
References
[1] M. J. Rosen, Surfactants and Interfacial Phenomena 3rd edn, 2004 (Wiley-Interscience: Hoboken, NJ).[2] (a) X. Zhao, F. Pan, H. Xu, M. Yaseen, H. Shan, C. A. E. Hauser, S. Zhang, J. R. Lu, Chem. Soc. Rev. 2010, 39, 3480.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXhtVehs73K&md5=f3e2c0e60fb505d07665e8c40f29e387CAS |
(b) M. Zelzer, R. V. Ulijn, Chem. Soc. Rev. 2010, 39, 3351.
| Crossref | GoogleScholarGoogle Scholar |
(c) X. Yan, P. Zhu, J. Li, Chem. Soc. Rev. 2010, 39, 1877.
| Crossref | GoogleScholarGoogle Scholar |
(d) C. Fong, T. Le, C. J. Drummond, Chem. Soc. Rev. 2012, 41, 1297.
| Crossref | GoogleScholarGoogle Scholar |
[3] S. Phan, W.-K. Fong, N. Kirby, T. Hanley, B. J. Boyd, Int. J. Pharm. 2011, 421, 176.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXhsVGnsbvF&md5=60280c0cb552ee3da8a40ba8a7b0e0e6CAS |
[4] X. Mulet, D. F. Kennedy, C. E. Conn, A. Hawley, C. J. Drummond, Int. J. Pharm. 2010, 395, 290.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXosF2it7Y%3D&md5=d3ed659eff60e01203860717e5078363CAS |
[5] R. Singh, J. W. Lillard, Exp. Mol. Pathol. 2009, 86, 215.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXlslWhtrs%3D&md5=a2f702e7e4feea92857a77b4fd8568b4CAS |
[6] S. Zhang, D. M. Marini, W. Hwang, S. Santoso, Curr. Opin. Chem. Biol. 2002, 6, 865.
| Crossref | GoogleScholarGoogle Scholar |
[7] (a) V. Castelletto, I. W. Hamley, J. Adamcik, R. Mezzenga, J. Gummel, Soft Matter 2012, 8, 217.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXhsFCmsL3E&md5=359da87be6b73314f34fa15583176749CAS |
(b) I. W. Hamley, Soft Matter 2011, 7, 4122.
| Crossref | GoogleScholarGoogle Scholar |
(c) C. Tang, R. V. Ulijn, A. Saiani, Langmuir 2011, 27, 14438.
| Crossref | GoogleScholarGoogle Scholar |
(d) R. Orbach, I. Mironi-Harpaz, L. Adler-Abramovich, E. Mossou, E. P. Mitchell, V. T. Forsyth, E. Gazit, D. Seliktar, Langmuir 2012, 28, 2015.
| Crossref | GoogleScholarGoogle Scholar |
[8] S. Zhang, Mater. Today 2003, 6, 20.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXjslenuro%3D&md5=dfc811f3d0ffb9d3411592180e12bec0CAS |
[9] K. C. Lee, P. A. Carlson, A. S. Goldstein, P. Yager, M. H. Gelb, Langmuir 1999, 15, 5500.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1MXjs1KisLY%3D&md5=35a7bfe536165ca4a807fdc4cb6bf507CAS |
[10] T. Eichholtz, D. B. Bont, J. De Widt, R. M. Liskamp, H. L. Ploegh, J. Biol. Chem. 1993, 268, 1982.
| 1:CAS:528:DyaK3sXitVyhsb4%3D&md5=4992b55c923a464056358de21f2a97f4CAS |
[11] K. Yamada, H. Ihara, T. Ide, T. Fukumoto, C. Hirayama, Chem. Lett. 1984, 13, 1713.
| Crossref | GoogleScholarGoogle Scholar |
[12] P. Ung, D. A. Winkler, J. Med. Chem. 2011, 54, 1111.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXht1Sltbw%3D&md5=4628793f0748248784907f549e1515d3CAS |
[13] (a) R. A. Davey, M. W. Davey, K. V. Cullen, X. E. Wells, C. L. Francis, H.-M. Williams, Q. Yang, M. J. Moghaddam, F. Widmer, R. G. Whittaker, Br. J. Pharmacol. 2002, 137, 1280.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXktlWh&md5=76025bd542914b2d481f4fc7ac8b44a5CAS |
(b) D. Patel, B. D. McKinley, T. P. Davis, F. Porreca, H. I. Yamamura, V. J. Hruby, Bioconjug. Chem. 1997, 8, 434.
| Crossref | GoogleScholarGoogle Scholar |
(c) C. L. Francis, Q. Yang, N. K. Hart, F. Widmer, M. K. Manthey, H. M. He-Williams, Aust. J. Chem. 2002, 55, 635.
| Crossref | GoogleScholarGoogle Scholar |
(d) C. Walker, J. M. Fraser, C. E. Walton, F. Widmer, C. L. Francis, Q. Yang, M. O’Sullivan, R. G. Whittaker, X. E. Wells, J. Drug Target. 2002, 10, 479.
| Crossref | GoogleScholarGoogle Scholar |
[14] A. M. Baker, D. C. Batchelor, G. B. Thomas, J. Y. Wen, M. Rafiee, H. Lin, J. Guan, Neuropeptides 2005, 39, 81.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXitFCjtrg%3D&md5=ab6b7bb682f040757589ecf13ca40906CAS |
[15] U.S. National Institutes of Health. http://clinicaltrials.gov/ (accessed 10 August 2012).
[16] S. J. Atkinson, V.-J. Ellis, S. E. Boyd, C. L. Brown, New J. Chem. 2007, 31, 155.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXhsFyqsQ%3D%3D&md5=621e7c3825ca4f776bd144c75fb4e7d1CAS |