The Hydrogen-Bonding Interactions between 1-Ethyl-3-Methylimidazolium Lactate Ionic Liquid and Methanol*
Hongyan He A B , Hui Chen A , Yanzhen Zheng C , Xiaochun Zhang A , Xiaoqian Yao A , Zhiwu Yu C and Suojiang Zhang A DA Beijing Key Laboratory of Ionic Liquids Clean Process, Key Laboratory of Green Process and Engineering, State Key Laboratory of Multiphase Complex Systems, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China.
B College of Chemistry and Chemical Engineering, Graduate University of Chinese Academy of Sciences, Beijing 100049, China.
C Department of Chemistry, Tsinghua University, Beijing 100084, China.
D Corresponding author. Email: sjzhang@home.ipe.ac.cn
Australian Journal of Chemistry 66(1) 50-59 https://doi.org/10.1071/CH12308
Submitted: 29 June 2012 Accepted: 1 November 2012 Published: 19 December 2012
Abstract
1-Ethyl-3-Methylimidazolium lactate ([EMIM][LAC]) is an environmental friendly ionic liquid with potential industrial applications. Attenuated total reflectance infrared spectroscopy (ATR-IR) and density functional theory (DFT) calculations were employed to investigate the molecular interactions between methanol and [EMIM][LAC]. The infrared spectra were analyzed by two methods: excess spectroscopy and two-dimensional (2D) correlation spectroscopy. In the ATR-FTIR spectra, v(C4,5–H), v(C2–H), v(alkyl), v(–OD), and v(–COO) all show blue shifts upon addition of methanol. 2D correlation analysis indicated that the v(imidazolium ring C–H) band varies before that of v(alkyl C–H) with increasing CD3OD content. The following sequential order of interaction strength is established by DFT calculations: EMIM–methanol –LAC > EMIM–LAC > LAC–methanol > EMIM–methanol.
References
[1] S. A. Forsyth, J. M. Pringle, D. R. MacFarlane, Aust. J. Chem. 2004, 57, 113.| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXovVCgtw%3D%3D&md5=7927ba038384984ae2d1e749a5e199e4CAS |
[2] J. S. Wilkes, Green Chem. 2002, 4, 73.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXksVCgsb4%3D&md5=d32fb81384dbba3ec94a44226b3880ceCAS |
[3] A. Navas, J. Ortega, R. Vreekamp, E. Marrero, J. Palomar, Ind. Eng. Chem. Res. 2009, 48, 2678.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXhtFOkurY%3D&md5=7e1df3b87c88c6c19ac1cf467d0d6fa2CAS |
[4] C. Cappelli, B. Mennucci, C. O. da Silva, J. Tomasi, J. Chem. Phys. 2000, 112, 5382.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3cXhs1eqsr4%3D&md5=69c0871c0782f43521399222ef4a7536CAS |
[5] H. C. Chang, J. C. Jiang, Y. C. Liou, C. H. Hung, T. Y. Lai, S. H. Lin, J. Chem. Phys. 2008, 129, 044506.
| Crossref | GoogleScholarGoogle Scholar |
[6] Y. Umebayashi, J. C. Jiang, K. H. Lin, Y. L. Shan, K. Fujii, S. Seki, S. I. Ishiguro, S. H. Lin, H. C. Chang, J. Chem. Phys. 2009, 131, 234502.
| Crossref | GoogleScholarGoogle Scholar |
[7] R. Vreekamp, D. Castellano, J. Palomar, J. Ortega, F. Espiau, L. Fernandez, E. Penco, J. Phys. Chem. B 2011, 115, 8763.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXnvValsrk%3D&md5=efce1d07ae3ef4d6a209cb19c1a5496cCAS |
[8] Q. G. Zhang, N. N. Wang, S. L. Wang, Z. W. Yu, J. Phys. Chem. B 2011, 115, 11127.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXhtFSmt7nM&md5=a77d5d7777f03fd4ace57a9d7c8d8b0dCAS |
[9] H. C. Chang, J. C. Jiang, W. C. Tsai, G. C. Chen, S. H. Lin, J. Phys. Chem. B 2006, 110, 3302.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XptFSitA%3D%3D&md5=4685390229afb72dd0a6815a17df8f8bCAS |
[10] W. Li, C. Qi, X. Wu, H. Rong, L. Gong, J. Mol. Struct. Theochem. 2008, 855, 34.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXktlWrsLw%3D&md5=aa8f5f800ecb9367053ab1df268728a6CAS |
[11] X. Zhu, H. Sun, D. Zhang, C. Liu, J. Mol. Model. 2011, 17, 1997.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXpsFejtbk%3D&md5=62288e73dc8ea1666ec932f16d8a3dc9CAS |
[12] B. Kumar, T. Singh, K. S. Rao, A. Pal, A. Kumar, J. Chem. Thermodyn. 2012, 44, 121.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXht1OqsLbL&md5=e0a8f6497765c0ef104f3fae4d83efdfCAS |
[13] J. M. Crosthwaite, M. J. Muldoon, S. Aki, E. J. Maginn, J. F. Brennecke, J. Phys. Chem. B 2006, 110, 9354.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XjsFWqtrk%3D&md5=50be2f995ad8f10af0ac5f5c1cfc2ba3CAS |
[14] A. Elaiwi, P. B. Hitchcock, K. R. Seddon, N. Srinivasan, Y. M. Tan, T. Welton, J. A. Zora, J. Chem. Soc., Dalton Trans. 1995, 21, 3467.
| Crossref | GoogleScholarGoogle Scholar |
[15] K. Dong, S. J. Zhang, D. X. Wang, X. Q. Yao, J. Phys. Chem. A 2006, 110, 9775.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XmslGku78%3D&md5=f6a169e4cbb33bb4fc5f727982a8da8dCAS |
[16] K. Dong, S. J. Zhang, Chemistry 2012, 18, 2748.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38Xit1ehsro%3D&md5=15396f6617fd5b9af18804dad612bda1CAS |
[17] T. Peppel, C. Roth, K. Fumino, D. Paschek, M. Köckerling, R. Ludwig, Angew. Chem. Int. Ed. 2011, 50, 6661.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXmvFahsrw%3D&md5=358d7b9c506db588650d552ef36fcaabCAS |
[18] H. C. Chang, J. C. Jiang, C. Y. Chang, J. C. Su, C. H. Hung, Y. C. Liou, S. H. Lin, J. Phys. Chem. B 2008, 112, 4351.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXjtlOjtL0%3D&md5=cd8feab040602e1b01d32cdfa88b1cedCAS |
[19] H. C. Chang, J. C. Jiang, Y. C. Liou, C. H. Hung, T. Y. Lai, S. H. Lin, Anal. Sci. 2008, 24, 1305.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXht1OlsrrI&md5=50b2dc5be4d11d5112fc7a4821cf3c94CAS |
[20] Q. G. Zhang, N. N. Wang, Z. W. Yu, J. Phys. Chem. B 2010, 114, 4747.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXjvVKgs7o%3D&md5=f379e0ddac2999c3ea59e07e3b5f50f0CAS |
[21] N. N. Wang, Q. G. Zhang, F. G. Wu, Q. Z. Li, Z. W. Yu, J. Phys. Chem. B 2010, 114, 8689.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXnsFGgsrk%3D&md5=db29fab7c5b882e1cbe53394a42a4858CAS |
[22] F. Shi, H. Xiong, Y. L. Gu, S. Guo, Y. Q. Deng, Chem. Commun. 2003, 9, 1054.
| Crossref | GoogleScholarGoogle Scholar |
[23] A. L. Miller, N. B. Bowden, Chem. Commun. 2007, 20, 2051.
| Crossref | GoogleScholarGoogle Scholar |
[24] J. D. Scholten, J. Dupont, Organometallics 2008, 27, 4439.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXpt1ygsLY%3D&md5=dd2fb536815b269ebfc8553e4bbaf4b1CAS |
[25] P. H. Stahl, C. G. Wermuth, Pharmaceutical Salts: Properties, Selection, and Use 2002 (Wiley-VCH: Weinheim).
[26] J. Pernak, I. Goc, Pol. J. Chem. 2003, 77, 975.
| 1:CAS:528:DC%2BD3sXmtlyhtb8%3D&md5=c27615ed37f80ec5799cad8ce61d8b96CAS |
[27] T. Hardarson, J. Q. Skarphedinsson, T. Sveinsson, J. Appl. Physiol. 1998, 84, 411.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1cXhtFSrt7g%3D&md5=c513beb3c2ee111680e8bdfe52083bbdCAS |
[28] M. Petkovic, J. Ferguson, A. Bohn, J. Trindade, I. Martins, M. B. Carvalho, M. C. Leitão, C. Rodrigues, H. Garcia, R. Ferreira, K. R. Seddon, L. P. N. Rebelo, C. Silva Pereira, Green Chem. 2009, 11, 889.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXmvV2qtL0%3D&md5=69381af7682b46672aa0511e13cee0bbCAS |
[29] J. Pernak, I. Goc, I. Mirska, Green Chem. 2004, 6, 323.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXmtVWgtrc%3D&md5=e6d35efcfb566f22beca77db16a7ada7CAS |
[30] J. Y. Wang, H. C. Jiang, Y. M. Liu, Y. Q. Hu, J. Chem. Thermodyn. 2011, 43, 800.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXitFahtb8%3D&md5=008fc761def287fc03137cf725f16256CAS |
[31] S. Aparicio, R. Alcalde, M. Atilhan, J. Phys. Chem. B 2010, 114, 5795.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXksFeqtrs%3D&md5=1b92283005c6bd9eab6da75cab39ac0aCAS |
[32] H.-J. Tong, J.-Y. Yu, Y.-H. Zhang, J. P. Reid, J. Phys. Chem. A 2010, 114, 6795.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXmvVSksrg%3D&md5=c9c15d7ac4b108375632af211f3bcd4bCAS |
[33] A. Watanabe, S. Morita, Y. Ozaki, Appl. Spectrosc. 2006, 60, 1054.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XpvVGju7c%3D&md5=f737e1d87465b24d9dfe605c675cb74dCAS |
[34] S. W. Li, X. L. Yu, G. J. Zhang, Y. Ma, J. N. Yao, B. Keita, N. Louis, H. Zhao, J. Mater. Chem. 2011, 21, 2282.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXhtlOju78%3D&md5=d27b0ec8f3e8ff08e3923abb1082315dCAS |
[35] R. J. Liu, S. W. Li, X. L. Yu, G. J. Zhang, Y. Ma, J. N. Yao, J. Mater. Chem. 2011, 21, 14917.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXhtF2htbzO&md5=dc471947e89f76559f89824859808ad2CAS |
[36] S. Li, X. Yu, G. Zhang, Y. Ma, J. Yao, P. de Oliveira, Carbon 2011, 49, 1906.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXisFWqtr0%3D&md5=01868b5ddd85b455e11b0f3160fc3297CAS |
[37] N. N. Wang, Q. Z. Li, Z. W. Yu, Appl. Spectrosc. 2009, 63, 1356.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXhsF2gsLjE&md5=7e2811f90d5453b04b6f625f7b6a84c9CAS |
[38] Q. Z. Li, G. S. Wu, Z. W. Yu, J. Am. Chem. Soc. 2006, 128, 1438.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XjsFeltA%3D%3D&md5=1fdaaa56ea3f33ea445dba61d6139695CAS |
[39] Z. W. Yu, I. Noda, Appl. Spectrosc. 2003, 57, 164.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXivFaju7c%3D&md5=1e4915eb85f525d8ab19f10f2104ed15CAS |
[40] M. A. Czarnecki, Appl. Spectrosc. 1999, 53, 1392.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1MXnsV2rtLs%3D&md5=ca98ad81975ac3a9ee5b691343abc611CAS |
[41] I. Noda, Y. Ozaki, Two-Dimensional Correlation Spectroscopy: Applications in Vibrational and Optical Spectroscopy 2004 (Wiley: Chichester).
[42] W. N. Hansen, Spectrochim. Acta 1965, 21, 815.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaF2MXntFWisA%3D%3D&md5=02003684ec81f0d466e70bb6efda9f54CAS |
[43] M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, B. Mennucci, G. A. Petersson, H. Nakatsuji, M. Caricato, X. Li, H. P. Hratchian, A. F. Izmaylov, J. Bloino, G. Zheng, J. L. Sonnenberg, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, J. A. Montgomery, Jr, J. E. Peralta, F. Ogliaro, M. Bearpark, J. J. Heyd, E. Brothers, K. N. Kudin, V. N. Staroverov, T. Keith, R. Kobayashi, J. Normand, K. Raghavachari, A. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, N. Rega, J. M. Millam, M. Klene, J. E. Knox, J. B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R. E. Stratmann, O. Yazyev, A. J. Austin, R. Cammi, C. Pomelli, J. W. Ochterski, R. L. Martin, K. Morokuma, V. G. Zakrzewski, G. A. Voth, P. Salvador, J. J. Dannenberg, S. Dapprich, A. D. Daniels, O. Farkas, J. B. Foresman, J. V. Ortiz, J. Cioslowski, D. J. Fox, Gaussian 09 2010 (Gaussian Inc.: Wallingford, CT).
[44] A. D. Becke, J. Chem. Phys. 1993, 98, 5648.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK3sXisVWgtrw%3D&md5=ebe7dc68a8c38908388e1cd8680e671cCAS |
[45] M. S. Gordon, J. S. Binkley, J. A. Pople, W. J. Pietro, W. J. Hehre, J. Am. Chem. Soc. 1982, 104, 2797.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL38XhvVOnsb0%3D&md5=7867fd070dd6906f3a8a68fd09f71962CAS |
[46] C. Lee, W. Yang, R. G. Parr, Phys. Rev. B 1988, 37, 785.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL1cXktFWrtbw%3D&md5=1db8a301b13c0d54e6e18228104ee4b7CAS |
[47] H. Park, Y. M. Jung, S. H. Yang, W. Shin, J. K. Kang, H. S. Kim, H. J. Lee, W. H. Hong, ChemPhysChem 2010, 11, 1711.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXntVCqtrg%3D&md5=092243b07784ee4045e2a12be1448b98CAS |
[48] X. M. Fu, L. Wang, S. G. Dai, Spectrosc. Spect. Anal. 2011, 31, 625.
| 1:CAS:528:DC%2BC3MXjtFyhtr0%3D&md5=03a49b0aa66729db36baad91ba5a86e8CAS |
[49] http://cccbdb.nist.gov/vibscalejust.asp (accessed 20 March 2012).
[50] G. Socrates, Infrared and Raman Characteristic Group Frequencies, 3rd Edn 2004 (John Wiley & Sons: Hoboken, NJ).
[51] K. Fumino, A. Wulf, R. Ludwig, Angew. Chem. Int. Ed. 2008, 47, 8731.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXhtl2rsLvF&md5=624dc76e847ae9678570ed81f28ce5d8CAS |
[52] L. Q. Zhang, Y. Wang, Z. Xu, H. R. Li, J. Phys. Chem. B 2009, 113, 5978.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXjvFKrtrs%3D&md5=a97c411526e43ee22ee410006bac318dCAS |
[53] J. Joseph, E. D. Jemmis, J. Am. Chem. Soc. 2007, 129, 4620.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXktFegtbw%3D&md5=8845409dbfbe8db04227946aed7bb99fCAS |
[54] W. R. Fawcett, A. A. Kloss, J. Phys. Chem. 1996, 100, 2019.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK28Xks1OgsA%3D%3D&md5=90aca5eea3e27fac6e69df9a694b54c6CAS |
[55] L. J. Zhang, X. S. Feng, H. G. Liu, D. J. Qian, L. Zhang, X. L. Yu, F. Z. Cui, Mater. Lett. 2004, 58, 719.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXmsVSr&md5=62870fe1f662fc5e182c92eb5277b723CAS |
[56] A. Bondi, J. Phys. Chem. 1964, 68, 441.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaF2cXls1Cgsg%3D%3D&md5=8882544a7040cbdf9697ef71ae18a98cCAS |
[57] I. Skarmoutsos, D. Dellis, R. P. Matthews, T. Welton, P. A. Hunt, J. Phys. Chem. B 2012, 116, 4921.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XlsFemtr0%3D&md5=bb771930c77e275bbe5b2b3405c055c6CAS |
[58] J. Sponer, P. Hobza, J. Am. Chem. Soc. 1994, 116, 709.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2cXntFOktQ%3D%3D&md5=043758143410f809181605256d4ca8f0CAS |
[59] X. B. Hu, Q. X. Lin, J. Y. Gao, Y. T. Wu, Z. B. Zhang, Chem. Phys. Lett. 2011, 516, 35.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXhtlygtbzM&md5=8897cde35c46b742d5ba7eb6c76a787fCAS |
[60] T. Köddermann, C. Wertz, A. Heintz, R. Ludwig, ChemPhysChem 2006, 7, 1944.
| Crossref | GoogleScholarGoogle Scholar |