Honeycomb Films from Perfluoropolyether-Based Star and Micelle Architectures
Zhou Zhang A B , Xiaojuan Hao B , Paul A. Gurr A , Anton Blencowe A , Timothy C. Hughes B C and Greg G. Qiao A CA Polymer Science Group, Department of Chemical & Biomolecular Engineering, University of Melbourne, Parkville, Vic. 3010, Australia.
B Materials Science and Engineering, Commonwealth Scientific and Industrial Research Organisation (CSIRO), Clayton, Vic. 3168, Australia.
C Corresponding authors. Email: tim.hughes@csiro.au; gregghq@unimelb.edu.au
Australian Journal of Chemistry 65(8) 1186-1190 https://doi.org/10.1071/CH12252
Submitted: 21 May 2012 Accepted: 22 June 2012 Published: 17 July 2012
Abstract
A perfluoropolyether-b-poly(t-butyl acrylate) (PFPE-b-PtBA) block copolymer macroinitiator was used to prepare both core cross-linked star (CCS) polymers and micelles, whereby the outer shell and core, respectively, are comprised of fluorinated segments. The star polymer complete with PFPE outer shell was synthesised via atom transfer radical polymerisation (ATRP) and the arm-first approach, through cross-linking of the PFPE-b-PtBA macroinitiator with ethylene glycol diacrylate (EGDA). Alternatively, the PFPE-b-PtBA block copolymer could be self-assembled in benzene to form micelles with a PtBA shell and PFPE core. Both the micelle and CCS polymer were subsequently fabricated into non-cracking honeycomb (HC) patterned films on both planar and non-planar surfaces via the ‘Breath Figure’ (BF) technique using a static casting system.
References
[1] L. Rayleigh, Nature 1911, 86, 416.[2] L. A. Connal, G. G. Qiao, Soft Matter 2007, 3, 837.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXmsF2itr4%3D&md5=db454991c241449321391431a4c506ecCAS |
[3] L. A. Connal, R. Vestberg, P. A. Gurr, C. J. Hawker, G. G. Qiao, Langmuir 2008, 24, 556.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXhsVegu7jM&md5=5bd549e80c80d8ae080bcaf39f4b6c23CAS |
[4] L. A. Connal, R. Vestberg, C. J. Hawker, G. G. Qiao, Adv. Funct. Mater. 2008, 18, 3315.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXhtlOgtbjF&md5=f6d363727960c063eadf76e444f267d7CAS |
[5] T. Ohzono, T. Nishikawa, M. Shimomura, J. Mater. Sci. 2004, 39, 2243.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXhs1WgtLk%3D&md5=d5f9b19b91222fa63adf5fd15adcde28CAS |
[6] G. Widawski, M. Rawiso, B. Francois, Nature 1994, 369, 387.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2cXktFWhs7s%3D&md5=644c1195b64a79435881063b6bd6398dCAS |
[7] M. Hernández-Guerrero, M. H. Stenzel, Polym. Chem. 2012, 3, 563.
| Crossref | GoogleScholarGoogle Scholar |
[8] H. Tsai, Z. Xu, R. K. Pai, L. Wang, A. M. Dattelbaum, A. P. Shreve, H.-L. Wang, M. Cotlet, Chem. Mater. 2011, 23, 759.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXhtlKjs7bM&md5=94073e128c2fe25818a6c12bf2244b22CAS |
[9] S. Yin, Y. Zhang, J. Kong, C. Zou, C. M. Li, X. Lu, J. Ma, F. Y. C. Boey, X. Chen, ACS Nano 2011, 5, 3831.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXlsVKltb8%3D&md5=8eb5c8942f3099575da35c7888252e68CAS |
[10] K. Kon, C. N. Brauer, K. Hidaka, H. G. Lohmannsroben, O. Karthaus, Langmuir 2010, 26, 12173.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXnsFGmtb8%3D&md5=58aba7b5289e31bcaa5ccff0f619ced3CAS |
[11] N. E. Zander, J. A. Orlicki, A. S. Karikari, T. E. Long, A. M. Rawlett, Chem. Mater. 2007, 19, 6145.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXht1OhsLbK&md5=8d814fab08a76ed63f03d3578a3b6d5aCAS |
[12] Y. Zhu, R. Sheng, T. Luo, H. Li, J. Sun, S. Chen, W. Sun, A. Cao, ACS Appl. Mater. Interfaces 2011, 3, 2487.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXosVCktrw%3D&md5=0cdbab74639a784bf0701f13f47cc79fCAS |
[13] D. Ishii, H. Yabu, M. Shimomura, Chem. Mater. 2009, 21, 1799.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXksV2ju78%3D&md5=c9ef96fab2b287edcabb4650d0ce1e16CAS |
[14] Y. N. G. Chan, T. C. Hughes, K. M. McLean, G. A. McFarland, X. Nguyen, J. S. Wilkie, G. Johnson, Biomaterials 2006, 27, 1287.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXht1Klu7bM&md5=4a978168ebca67dd4d94ddb39031523fCAS |
[15] M. D. M. Evans, H. Chaouk, J. S. Wilkie, B. A. Dalton, S. Taylor, R. Z. Xie, T. C. Hughes, G. Johnson, G. A. McFarland, H. H. Griesser, J. G. Steele, G. F. Meijs, D. F. Sweeney, K. M. McLean, Biomaterials 2011, 32, 8870.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXht1WmtrnM&md5=ecbb21dde2328910aec90a5de128e086CAS |
[16] Y. Gao, S. Feng, Q. Wang, Y. Huang, F. Qing, Adv. Mater. Res 2009, 79–82, 683.
| Crossref | GoogleScholarGoogle Scholar |
[17] G. Malinverno, G. Pantini, J. Bootman, Food Chem. Toxicol. 1996, 34, 639.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK28XlsVChurk%3D&md5=adef7f3f065628e403f3a9b1fbae2322CAS |
[18] H. Chaouk, T. C. Hughes, J. S. Wilkie, G. F. Meijs, 2001, Polymers: US Patent No. 6225367.
[19] A. Blencowe, J. F. Tan, T. K. Goh, G. G. Qiao, Polymer 2009, 50, 5.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXksFyjsA%3D%3D&md5=3b5baeb942c06f2a717731304b575bf9CAS |
[20] H. Yabu, M. Takebayashi, M. Tanaka, M. Shimomura, Langmuir 2005, 21, 3235.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXitVWqsbo%3D&md5=e62f9770fc5f1d76b4b3c7fcae3a446eCAS |
[21] A. Priola, R. Bongiovanni, G. Malucelli, A. Pollicino, C. Tonelli, G. Simeone, Macromol. Chem. Phys. 1997, 198, 1893.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2sXktlGns7w%3D&md5=3da62fe6d91cbe9be17048b07a1c3269CAS |