Register      Login
Australian Journal of Chemistry Australian Journal of Chemistry Society
An international journal for chemical science
RESEARCH FRONT

Synthesis of Poly(2-methyl-2-oxazoline) Star Polymers with a β-Cyclodextrin Core

Guillaume Pereira A , Cécile Huin A , Simona Morariu B , Véronique Bennevault-Celton A C and Philippe Guégan A C
+ Author Affiliations
- Author Affiliations

A LAMBE, UMR8587, University of Evry, 91025 Evry Cedex, France.

B ‘Petru Poni’ Institute of Macromolecular Chemistry, 700487 Iasi, Romania.

C Corresponding authors. Email: veronique.celton@univ-evry.fr; philippe.guegan@univ-evry.fr

Australian Journal of Chemistry 65(8) 1145-1155 https://doi.org/10.1071/CH12232
Submitted: 9 May 2012  Accepted: 22 June 2012   Published: 24 July 2012

Abstract

Synthesis of star polymers with a β-cyclodextrin (CD) core was undertaken using the arm-first, then the core-first strategy. Cationic ring opening polymerisation (CROP) of 2-methyl-2-oxazoline (MeOx) was first initiated by allyl bromide, and then quenched with heptakis(6-deoxy-6-amino)β-CD in order to get a 7-arm star polymer. Then heptakis(6-deoxy-6-iodo-2,3-di-O-acetyl)β-CD was synthesised in order to get an initiator for the CROP of MeOx. Initiation and propagation kinetic measurements were undertaken and the ratio kp/ki was found to be too high to provide a controlled polymerisation. Using iodine as co-initiator allowed a decrease of the kp/ki ratio that gave better control of the polymerisation. DOSY NMR and viscosity characterisations were undertaken, and both techniques lead to the demonstration of a lower hydrodynamic volume of the star polymers versus the linear counterparts, for compounds of the same molecular weight.


References

[1]  S. B. Kharchenko, R. M. Kannan, J. J. Cernohous, S. Venkataramani, Macromolecules 2003, 36, 399.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38XpslOms78%3D&md5=30c7559594aa91252aab7c9c32b9c60fCAS |

[2]  N. Fazeli, N. Mohammadi, F. Afshar Taromi, Polym. Test. 2004, 23, 431.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXjsF2iur8%3D&md5=bdbbf60a30398c33653b9c0998b257ddCAS |

[3]  K. Inoue, Prog. Polym. Sci. 2000, 25, 453.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3cXlsVylurs%3D&md5=6099d5ccf3e0dba5e7c887e695266c49CAS |

[4]  T. He, T. Hu, X. Zhang, G. Zhong, H. Zhang, J. Appl. Polym. Sci. 2009, 112, 2120.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXjs1yhuro%3D&md5=00006c24683e315c7286416f6ee27d3bCAS |

[5]  K. Ohno, B. Wong, D. M. Haddleton, J. Polym. Sci. A Polym. Chem. 2001, 39, 2206.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3MXksFKjtLY%3D&md5=00c8a6427767a25b15a387d5327d2517CAS |

[6]  M. V. Rekharsky, Y. Inoue, Chem. Rev. 1998, 98, 1875.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1cXksV2itbg%3D&md5=11d0a78a82a6de84eaee575d1b94000cCAS |

[7]  N. Badi, P. Guégan, Carbohydr. Res. 2007, 342, 1989.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXos1Wrtbk%3D&md5=0414e9c8a0b507c987298340b8c1a2dcCAS |

[8]  A. R. Khan, P. Forgo, K. J. Stine, V. T. D’Souza, Chem. Rev. 1998, 98, 1977.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1cXksV2itL4%3D&md5=dce277018b5ed4c1a5b57185fb5d43c5CAS |

[9]  J. Li, Z. Guo, J. Xin, G. Zhao, H. Xiao, Carbohydr. Polym. 2010, 79, 277.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXhtlGjtL3O&md5=2967d72f5d0c43abc61da656c87995c4CAS |

[10]  M. H. Stenzel-Rosenbaum, T. P. Davis, V. Chen, A. G. Fane, Macromolecules 2001, 34, 5433.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3MXkvVCgurY%3D&md5=77db08dc453acada4656fc090ddac35fCAS |

[11]  F. A. Plamper, H. Becker, M. Lanzendörfer, M. Patel, A. Wittemann, M. Ballauff, A. H. E. Müller, Macromol. Chem. Phys. 2005, 206, 1813.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXhtFSrtbzM&md5=862875784ff4ac7b639511b0cfdb93e2CAS |

[12]  T. Kakuchi, A. Narumi, T. Matsuda, Y. Miura, N. Sugimoto, T. Satoh, H. Kaga, Macromolecules 2003, 36, 3914.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXjtlemsbs%3D&md5=5d7c2e25c912ee13c2fd6b31244a56a7CAS |

[13]  M. H. Stenzel, T. P. Davis, J. Polym. Sci. A Polym. Chem. 2002, 40, 4498.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38XptlahsLc%3D&md5=ca2a0c7e6370cbd946984f12e05cd285CAS |

[14]  P.-F. Gou, W.-P. Zhu, N. Xu, Z.-Q. Shen, J. Polym. Sci. A Polym. Chem. 2008, 46, 6455.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXht1Snsb7M&md5=45d5b1f1c2ea1803cd0df7d86a0028c5CAS |

[15]  Y. Miao, C. Rousseau, A. Mortreux, P. Martin, P. Zinck, Polymer 2011, 52, 5018.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXht12itrbF&md5=88d475a80b0257aa20493a6987164b69CAS |

[16]  M. Adeli, Z. Zarnegar, R. Kabiri, Eur. Polym. J. 2008, 44, 1921.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXos12iurc%3D&md5=c7f159d98cd90c777bdd8c21f7678138CAS |

[17]  C. Yang, H. Li, S. H. Goh, J. Li, Biomaterials 2007, 28, 3245.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXks12itLc%3D&md5=96eec14ea9d0c2c10a48dee92b321ba4CAS |

[18]  H. Huang, H. Yu, G. Tang, Q. Wang, J. Li, Biomaterials 2010, 31, 1830.
         | Crossref | GoogleScholarGoogle Scholar |

[19]  M. W. M. Fijten, C. Haensch, B. M. Van Lankvelt, R. Hoogenboom, U. S. Schubert, Macromol. Chem. Phys. 2008, 209, 1887.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXht1ClsLjN&md5=64cdb87cededcac13d94bb8fa100b83dCAS |

[20]  R. Hoogenboom, Angew. Chem. Int. Ed. 2009, 48, 7978.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXht1Kju7%2FP&md5=c67d933e984087b73c2ddb1a558df256CAS |

[21]  A. Kowalczuk, J. Kronek, K. Bosowska, B. Trzebicka, A. Dworak, Polym. Int. 2011, 60, 1001.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXntlGnsLo%3D&md5=36555eff90c5638481b7f9991f5b9c79CAS |

[22]  R. Luxenhofer, M. Bezen, R. Jordan, Macromol. Rapid Commun. 2008, 29, 1509.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXht1ansrfJ&md5=59fcfbf67ca2685d4037f8729fecb258CAS |

[23]  R. Hoogenboom, M. W. M. Fijten, G. Kickelbick, U. S. Schubert, Beilstein J. Org. Chem. 2010, 6, 773.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXhtF2rsbrJ&md5=00052e33b9ceb0bf6dfe99172bd8bd2dCAS |

[24]  E. Bertrand, C. Gonçalves, L. Billiet, J.-P. Gomez, C. Pichon, H. Cheradame, P. Midoux, P. Guégan, Chem. Commun. 2011, 47, 12547.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXhsVGrs7nM&md5=a5ba2a7b84d299d25d44ca2f2ef7c826CAS |

[25]  K. Aoi, M. Okada, Prog. Polym. Sci. 1996, 21, 151.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK28XitVeltbo%3D&md5=953e165809a333676e67b40488f7879fCAS |

[26]  S. Kobayashi, H. Uyama, J. Polym. Sci. A Polym. Chem. 2002, 40, 192.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38XjtlansA%3D%3D&md5=49f34b7e90a5d73a183d7f89354edcb4CAS |

[27]  K. F. Morris, C. S. Johnson, J. Am. Chem. Soc. 1993, 115, 4291.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK3sXisVWhurk%3D&md5=d8e8484bfcbc05e4238ad020460e68e9CAS |

[28]  R. Huo, R. Wehrens, J. van Duynhoven, L. M. C. Buydens, Anal. Chim. Acta 2003, 490, 231.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXmsVOlt78%3D&md5=6e17e2c9e0e9f2df22e5eccbaa66e60aCAS |

[29]  Y. Oda, S. Matsuda, T. Yamanoi, A. Murota, K. Katsuraya, Supramol. Chem. 2009, 21, 638.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXhsFSitr3E&md5=a69985b3f4a6ec0293d11ef575fd195cCAS |

[30]  S. Viel, M. Mazarin, R. Giordanengo, T. N. T. Phan, L. Charles, S. Caldarelli, D. Bertin, Anal. Chim. Acta 2009, 654, 45.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXhtlWnsb7I&md5=7b540fed53b4e7af1892c0c8a31c443fCAS |

[31]  Q. Liu, M. Konas, J. S. Riffle, Macromolecules 1993, 26, 5572.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK3sXlvVWhu7s%3D&md5=4362b42d6dc7c2dafe20475e06042abdCAS |

[32]  G. Volet, V. Chanthavong, V. Wintgens, C. Amiel, Macromolecules 2005, 38, 5190.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXktF2ls7Y%3D&md5=8940a4268c06947139addad075e6feeeCAS |

[33]  T. Saegusa, T. Ikeda, Macromolecules 1973, 6, 808.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaE2cXhsFaqug%3D%3D&md5=8f263e1d1845027d3f2ca60a722beadaCAS |

[34]  K. Takeo, T. Kuge, Starch 1972, 24, 331.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaE3sXktlyruw%3D%3D&md5=6537ecea1693a0dccfd60bafcd9d75cdCAS |

[35]  S. Morariu, C. E. Brunchi, L. Ghimici, M. Bercea, Viscometric Behaviour of Polymer Solutions, in Functional Polymeric Materials Designed for High Tech Applications 2010, pp. 85–107 (Ed. M. Nechifor) (Research Signpost: Kerala, India).

[36]  W. Burchard, Adv. Polym. Sci. 1999, 143, 113.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1MXksVCltQ%3D%3D&md5=14034f4d8fcfe32e3fb4708cb4ac382bCAS |

[37]  T. Aberle, W. Burchard, Starch 1997, 49, 215.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2sXks1WhsLc%3D&md5=e8c700793eeb8d7cb42eee93d88fef8aCAS |

[38]  S. Morariu, M. Bercea, S. Ioan, C. Ioan, Eur. Polym. J. 1999, 35, 377.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1MXlsFCksA%3D%3D&md5=fdc5d6555b2c6e6b231c624dd66bbe5cCAS |

[39]  M. Bercea, C. Ioan, C. Ioan, B. C. Simionescu, C. I. Simionescu, Prog. Polym. Sci. 1999, 24, 379.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1MXksVWisLk%3D&md5=6da04ee2ed9d6796c45345f5291575eaCAS |

[40]  P. Gupta, C. Elkin, T. E. Long, G. L. Wilkes, Polymer 2005, 46, 4799.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXks1ahu74%3D&md5=a1d9b99ba04f52df837838d21e5aceeaCAS |

[41]  B. H. Zimm, W. H. Stockmayer, J. Chem. Phys. 1949, 17, 1301.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaG3cXisVWjtA%3D%3D&md5=0d2f30f14131e319e0954dd17211f953CAS |

[42]  J. L. Jiménez Blanco, J. M. Garcia Fernandez, A. Gadelle, J. Defaye, Carbohydr. Res. 1997, 303, 367.
         | Crossref | GoogleScholarGoogle Scholar |

[43]  P. R. Ashton, R. Königer, J. Fraser Stoddart, J. Org. Chem. 1996, 61, 903.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK28XltlSmtw%3D%3D&md5=02e5045147af29a90cb8b34fbcbf4106CAS |

[44]  F. Cao, Y. Ren, W. Hua, Carbohydr. Res. 2009, 344, 526.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXisVOhtLs%3D&md5=1a945473045fc90548769f63f053b2f0CAS |

[45]  V. Bennevault-Celton, A. Urbach, O. Martin, C. Pichon, P. Guégan, P. Midoux, Bioconjug. Chem. 2011, 22, 2404.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXhtlCgtbbO&md5=63840a2e37adacfc63b10ededde1bd0aCAS |

[46]  M. Holz, H. Weingärtner, J. Magn. Reson. 1991, 92, 115.
         | 1:CAS:528:DyaK3MXksFOlur4%3D&md5=7cc3da0fd7b6b3873d5eea6884c94ba5CAS |