Free Standard AU & NZ Shipping For All Book Orders Over $80!
Register      Login
Australian Journal of Chemistry Australian Journal of Chemistry Society
An international journal for chemical science
RESEARCH ARTICLE

Platinum-Ruthenium Nanoparticles: Active and Selective Catalysts for Hydrogenation of Phenylacetylene

Jan-Yves Ruzicka A , David P. Anderson A , Sally Gaw A and Vladimir B. Golovko A B C
+ Author Affiliations
- Author Affiliations

A Department of Chemistry, University of Canterbury, Private Bag 4800, Christchurch 8140, New Zealand.

B The MacDiarmid Institute for Advanced Materials and Nanotechnology, Wellington 6140, New Zealand.

C Corresponding author. Email: vladimir.golovko@canterbury.ac.nz

Australian Journal of Chemistry 65(10) 1420-1425 https://doi.org/10.1071/CH12219
Submitted: 27 April 2012  Accepted: 4 June 2012   Published: 3 July 2012

Abstract

Bimetallic metal nanoparticles are often more catalytically active than their monometallic counterparts, due to a so-called ‘synergistic effect’. Atomically precise ruthenium-platinum clusters have been shown to be active in the hydrogenation of phenylacetylene to styrene (a reaction of importance to the polymer industry). However, the synthesis of these clusters is generally complex, and cannot be modified to produce clusters with differing metal compositions or ratios. Hence, any truly systematic study of compositional effects using such clusters is hindered by the inaccessibility of certain metal ratios. In this study, a series of larger bimetallic ruthenium-platinum colloids of varying metal ratios was synthesised in solution and immobilised on silica. Catalytic activity was evaluated by hydrogenation of phenylacetylene to styrene. Both bimetallic and monometallic colloids were active catalysts for the hydrogenation of phenylacetylene to styrene and further to ethylbenzene. Of those studied, a catalyst composed of 73 % platinum-27 % ruthenium (by moles) showed the highest activity. This suggests that synergistic effects play an important role in the catalysis of this reaction. To our knowledge this is the first systematic study of ruthenium-platinum nanoparticle catalytic activity on this reaction.


References

[1]  G. A. Ozin, A. C. Arsenault, Nanochemistry 2006 (RSC Publishing: Dorchester).

[2]  A. T. Bell, Science 2003, 299, 1688.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXitVSjtLs%3D&md5=a1d6a31e2436adb1b71d129a4763cb5fCAS |

[3]  J. M. Thomas, B. F. G. Johnson, R. Raja, G. Sankar, P. A. Midgley, Acc. Chem. Res. 2003, 36, 20.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38Xnslamtr4%3D&md5=a0968975a50d52b161590993470dd5f8CAS |

[4]  A. B. Hungria, R. Raja, R. D. Adams, B. Captain, J. M. Thomas, P. A. Midgley, V. Golovko, B. F. G. Johnson, Angew. Chem. Int. Edit. 2006, 45, 4782.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28Xns1Wru7s%3D&md5=229e26d8e34d73b1da6e8feb9e6ea9dcCAS |

[5]  R. D. Adams, J. Organomet. Chem. 2000, 600, 1.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3cXltFClsr4%3D&md5=30c9103a67017012cb0859fb0c2eb38cCAS |

[6]  H. Bönnemann, R. M. Richards, Eur. J. Inorg. Chem. 2001, 2455.
         | Crossref | GoogleScholarGoogle Scholar |

[7]  M. P. Hogarth, T. R. Ralph, Platinum Met. Rev. 2002, 46, 146.
         | 1:CAS:528:DC%2BD3sXntFek&md5=5734e04637d68f9c3573515d99d0c165CAS |

[8]  Ullmann’s Encyclopedia of Industrial Chemistry 2006 (Ed. F. Ullmann) (John Wiley & Sons, Inc.: Hoboken, NJ).

[9]  J. Badano, C. Lederhos, M. Quiroga, P. L’Argentière, Quim. Nova 2010, 33, 48.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXitlOhsLg%3D&md5=cbf3e58b22b33fe4281f69314ac41d9eCAS |

[10]  R. D. Adams, B. Captain, L. Zhu, J. Am. Chem. Soc. 2004, 126, 3042.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXhsVWksbY%3D&md5=9f2eda74bff898ae9182bfedd96867faCAS |

[11]  M. Liu, W. Yu, H. Liu, J. Zheng, J. Colloid Interf. Sci. 1999, 214, 231.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1MXjt1ait70%3D&md5=70e37c9ea04f157ef5573ee5da42e9fdCAS |

[12]  Y. Shimazaki, Y. Kobayashi, S. Yamada, T. Miwa, M. Konno, J. Colloid Interf. Sci. 2005, 292, 122.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXhtFGhsbbL&md5=8aa69586fbbee664b8855ad74a269a50CAS |

[13]  D. Nagao, Y. Shimazaki, Y. Kobayashi, M. Konno, Colloid Surface A. 2006, 273, 97.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28Xjtl2k&md5=5abb6cf7f9cb9811c18e0ff2f2b7166fCAS |

[14]  R. Schlögl, S. B. Abd Hamid, Angew. Chem. Int. Edit. 2004, 43, 1628.
         | Crossref | GoogleScholarGoogle Scholar |

[15]  L. Dubau, C. Coutanceau, E. Garnier, J.-M. Léger, C. Lamy, J. Appl. Electrochem. 2003, 33, 419.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXkvVensrg%3D&md5=ff33410b8c2d6fd4bfa9afd23fee7f02CAS |

[16]  R. Raja, T. Khimyak, J. M. Thomas, S. Hermans, B. F. G. Johnson, Angew. Chem. Int. Edit. 2001, 40, 4638.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38XivFKjtA%3D%3D&md5=fc4e5b9ce8a7c16ff1ee8741f6e8114fCAS |

[17]  R. D. Adams, T. S. Bamard, Z. Li, W. Wu, J. H. Yamamoto, J. Am. Chem. Soc. 1994, 116, 9103.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2cXmvVSrtr0%3D&md5=9d91f4c1858053a84f39d8552f0cdc8cCAS |

[18]  W. L. F. Armarego, C. L. L. Chai, Purification of Laboratory Chemicals 2003, 5th edition (Butterworth-Heinemann: Bodmin, Cornwall).