Characterization of Gellan Gum by Capillary Electrophoresis
Danielle L. Taylor A B , Cameron J. Ferris C , Alison R. Maniego B , Patrice Castignolles B D , Marc in het Panhuis C and Marianne Gaborieau AA University of Western Sydney, Nanoscale Organisation and Dynamics Group, School of Science and Health, Parramatta campus, Locked Bag 1797, Penrith, NSW 2751, Australia.
B University of Western Sydney, School of Science and Health, Australian Centre for Research on Separation Science (ACROSS), Parramatta campus, Locked Bag 1797, Penrith, NSW 2751, Australia.
C Soft Materials Group, School of Chemistry, ARC Centre of Excellence for Electromaterials Science, University of Wollongong, Northfields Avenue, Wollongong, NSW 2522, Australia.
D Corresponding author. Email: p.castignolles@uws.edu.au
Australian Journal of Chemistry 65(8) 1156-1164 https://doi.org/10.1071/CH12211
Submitted: 19 April 2012 Accepted: 2 July 2012 Published: 8 August 2012
Abstract
Gellan gums were characterised for the first time using free-solution capillary electrophoresis (CE) or CE under critical conditions (CE-CC). CE-CC is a fast method that separates the polysaccharide. Gellan gums are shown to be heterogeneous in terms of their electrophoretic mobility at 55°C revealing: oligomer peak(s), broad peaks of polymers with a random coil conformation with different degrees of acylation (composition), aggregates, and polymers with double-helix conformation. CE-CC is complementary with the rheological analysis also performed in this work. Sonication of gellan gums is shown to decrease the viscosity of gellan gum mainly by breaking up aggregates. The effect of sonication is stronger on the high-acyl gellan gum since the latter has a far higher tendency to aggregate.
References
[1] I. Giavasis, L. M. Harvey, B. McNeil, Crit. Rev. Biotechnol. 2000, 20, 177.| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3cXnvVOju7s%3D&md5=1cdf37463c3420063e193aa108a54d40CAS |
[2] A. M. Fialho, L. M. Moreira, A. T. Granja, A. O. Popescu, K. Hoffman, I. Sa-Correia, Appl. Microbiol. Biotechnol. 2008, 79, 889.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXnslKgtr8%3D&md5=4797cd88140dd60e5ae634e16d26753eCAS |
[3] C. J. Ferris, M. in het Panhuis, Soft Matter 2009, 5, 1466.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXjsFaisb0%3D&md5=d0df93e23e814f01bec163def7109446CAS |
[4] C. J. Ferris, M. in het Panhuis, Soft Matter 2009, 5, 3430.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXhtVOnt7jI&md5=d5dad95a072955e28b5151706d3c17dbCAS |
[5] E. R. Morris, K. Nishinari, M. Rinaudo, Food Hydrocoll. 2012, 28, 373.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XjsFOjs7k%3D&md5=b93e85f7bf2ef20aa317dc957faad74aCAS |
[6] E. Ogawa, R. Takahashi, H. Yajima, K. Nishinari, Biopolymers 2005, 79, 207.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXhtFOqtbvI&md5=4c5d84cf6e8e6d275d7a8f5669c8ee01CAS |
[7] E. Ogawa, K. Sugimoto, R. Takahashi, H. Yajima, K. Kubota, K. Nishinari, Trans. Mater. Res. Soc. Jpn. 2006, 31, 731.
| 1:CAS:528:DC%2BD28Xht1Glsr%2FL&md5=c5c4cab2984d1fa2ecc69f813187af91CAS |
[8] E. Ogawa, Carbohydr. Polym. 1996, 30, 145.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2sXlslyqtQ%3D%3D&md5=272eeba499bea1c291d478933ded0effCAS |
[9] D. Lecacheux, Y. Mustiere, R. Panaras, G. Brigand, Carbohydr. Polym. 1986, 6, 477.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL2sXjtlCjtw%3D%3D&md5=780368147cb762228d92604b4ea94fe6CAS |
[10] E. Redouan, P. Emmanuel, B. Christine, C. Bernard, C. Josiane, D. Cedric, Carbohydr. Polym. 2010, 80, 485.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXisF2qsb4%3D&md5=b0791fe79354fc6a6470c425817c97c0CAS |
[11] E. Dreveton, F. Monot, J. Lecourtier, D. Ballerini, L. Choplin, J. Ferment. Bioeng. 1996, 82, 272.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK28XmtFSlt7o%3D&md5=96faed71602bd098f49309c73e091e98CAS |
[12] N. L. Hoang, A. Landolfi, A. Kravchuk, E. Girard, J. Peate, J. M. Hernandez, M. Gaborieau, O. Kravchuk, R. G. Gilbert, Y. Guillaneuf, P. Castignolles, J. Chromatogr. A 2008, 1205, 60.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXhtVynt7jL&md5=f354cdfb4703053aa12c8dac1099156eCAS |
[13] A. P. Gunning, V. J. Morris, Int. J. Biol. Macromol. 1990, 12, 338.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK3MXosVWqtg%3D%3D&md5=e05352de992904f6c024a45f6b4eb04eCAS |
[14] F. A. Messaud, R. D. Sanderson, J. R. Runyon, T. Otte, H. Pasch, S. K. R. Williams, Prog. Polym. Sci. 2009, 34, 351.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXjsl2hsLw%3D&md5=510c48fc3e2e29e89785c97881bf5ee2CAS |
[15] M. Gaborieau, P. Castignolles, Anal. Bioanal. Chem. 2011, 399, 1413.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXhtlWqt7jF&md5=aee5d4889f2bb2502ac356bd4f242cb4CAS |
[16] K. D. Cole, C. M. Tellez, R. B. Nguyen, Appl. Biochem. Biotechnol. 1999, 82, 57.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3cXhsVGkt74%3D&md5=4a6e9fb650798c009eec6da1081dfbf9CAS |
[17] D. H. Craston, P. Farnell, J. M. Francis, S. Gabriac, W. Matthews, M. Saeed, I. W. Sutherland, Food Chem. 2001, 73, 103.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3MXhs1Squro%3D&md5=2f5a70188aca329c21f929d4ea3ab054CAS |
[18] N. W. Frost, M. Jing, M. T. Bowser, Anal. Chem. 2010, 82, 4682.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXmsVGis7Y%3D&md5=8b260152c4f73f2cc2fcacfd63f195a8CAS |
[19] X. Fu, L. Huang, M. Zhai, W. Li, H. Liu, Carbohydr. Polym. 2007, 68, 511.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXislWgsr8%3D&md5=bacede12ea1f04b5721abece11a6cf82CAS |
[20] L. Blanes, R. M. Saito, F. A. Genta, J. Donega, W. R. Terra, C. Ferreira, C. L. do Lago, Anal. Biochem. 2008, 373, 99.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXhsVCks7zN&md5=60d178b0e1aa65d11a69dd445849c595CAS |
[21] H. Cottet, P. Gareil, O. Theodoly, C. E. Williams, Electrophoresis 2000, 21, 3529.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3cXos1Sntrs%3D&md5=b2f79b338ec12d3912d8f89cb25124e2CAS |
[22] E. Souaid, H. Cottet, Electrophoresis 2005, 26, 3300.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXhtVGgsrrO&md5=aca3388a385d09e1d690441c5461d5ebCAS |
[23] P. Castignolles, M. Gaborieau, E. F. Hilder, E. Sprong, C. J. Ferguson, R. G. Gilbert, Macromol. Rapid Commun. 2006, 27, 42.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XntVKlsw%3D%3D&md5=04c69dceccaf0b8d83d218b3e6a70ba2CAS |
[24] M. Gaborieau, T. J. Causon, Y. Guillaneuf, E. F. Hilder, P. Castignolles, Aust. J. Chem. 2010, 63, 1219.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXpvVKksL0%3D&md5=fbe7899dda897dc9caed74c01ed39cfeCAS |
[25] E. Stellwagen, Y. J. Lu, N. C. Stellwagen, Biochemistry 2003, 42, 11745.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXntlyksb0%3D&md5=fd44bbe82b50d1f5a55f263bdabd7174CAS |
[26] S. V. Olesik, Anal. Bioanal. Chem. 2004, 378, 43.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXps1yjur8%3D&md5=8f910507a72d659bdbea661168621b15CAS |
[27] H. Pasch, M. Adler, D. Knecht, F. Rittig, R. Lange, Macromol. Symp. 2006, 231, 166.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XhsFajurg%3D&md5=e65b6d6570ad7e37194d070650d2b244CAS |
[28] K. Im, Y. Kim, T. Chang, K. Lee, N. Choi, J. Chromatogr. A 2006, 1103, 235.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XksFGguw%3D%3D&md5=8b4acb9891051532ccfc636d6a3a4aafCAS |
[29] M. Jacquin, P. Muller, G. Lizarraga, C. Bauer, H. Cottet, O. Theodoly, Macromolecules 2007, 40, 2672.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXislKrur8%3D&md5=28ecce5b7b09b7d70b219b1693c83d7bCAS |
[30] D. Berek, Macromol. Chem. Phys. 2008, 209, 695.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXlsVSrtr0%3D&md5=b5001f90f067fbf3d01dcf7e081d854eCAS |
[31] E. Beaudoin, A. Favier, C. Galindo, A. Lapp, C. Petit, D. Gigmes, S. Marque, D. Bertin, Eur. Polym. J. 2008, 44, 514.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXhsFWis7Y%3D&md5=82879f59afddcb0d4427d5534ce50f29CAS |
[32] A. Favier, C. Petit, E. Beaudoin, D. Bertin, E-Polymers 2009, 15,
[33] S. E. Guillotin, E. J. Bakx, P. Boulenguer, H. A. Schols, A. G. J. Voragen, Food Hydrocoll. 2007, 21, 444.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28Xht1WmtbvN&md5=431e1058e01a3cf907920437148963fbCAS |
[34] K. A. Oudhoff, F. A. Ab Buijtenhuijs, P. H. Wijnen, P. J. Schoenmakers, W. T. Kok, Carbohydr. Res. 2004, 339, 1917.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXlvVWgu74%3D&md5=d69ca796a1111555fa054cff1a8e7c5bCAS |
[35] H. Cottet, P. Gareil, Methods Mol. Biol. 2008, 384, 541.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXjsl2kt7k%3D&md5=05302814339f9845758e6581b8f23e57CAS |
[36] M. A. K. Williams, A. Cucheval, A. Strom, M. C. Ralet, Biomacromolecules 2009, 10, 1523.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXkvVGhurg%3D&md5=3abbf1d9944ebc4b7f09ea12c3bdcc4cCAS |
[37] N. Anik, M. Airiau, M. P. Labeau, C. T. Vuong, J. Reboul, P. Lacroix-Desmazes, C. Gerardin, H. Cottet, Macromolecules 2009, 42, 2767.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXjsFegtL8%3D&md5=6b5f027d7aa5ee4863caa538116309e4CAS |
[38] V. Crescenzi, M. Dentini, I. C. M. Dea, Carbohydr. Res. 1987, 160, 283.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL2sXlt12ntbc%3D&md5=6a19ae1fe57057944c46afabd31c3ae7CAS |
[39] S. Hoffstetterkuhn, A. Paulus, E. Gassmann, H. M. Widmer, Anal. Chem. 1991, 63, 1541.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK3MXkvVCmtL4%3D&md5=cc6ff8281af4de520e9dae60fd13d2caCAS |
[40] A. Dona, C. W. W. Yuen, J. Peate, R. G. Gilbert, P. Castignolles, M. Gaborieau, Carbohydr. Res. 2007, 342, 2604.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXht1Oqs7nP&md5=3cbec8fabf769fcc4d27636e3bc14955CAS |
[41] S. Schmitz, A. C. Dona, P. Castignolles, R. G. Gilbert, M. Gaborieau, Macromol. Biosci. 2009, 9, 506.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXmvVCrsLg%3D&md5=a91b34182c47ae46f39da2d8b7481e08CAS |
[42] H. Cottet, P. Gareil, Electrophoresis 2000, 21, 1493.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3cXjsFyrsLs%3D&md5=c4781074efe1ed5cfc990afb3cc5876eCAS |
[43] H. Cottet, J. P. Biron, M. Martin, Anal. Chem. 2007, 79, 9066.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXht1Wlt7jP&md5=1c704ad2cd62b6fa8eabd1457c334de9CAS |
[44] H. Cottet, J. P. Biron, L. Cipelletti, R. Matmour, M. Martin, Anal. Chem. 2010, 82, 1793.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXhsVyis7o%3D&md5=f5489b0b15043928cc639362e48775dcCAS |
[45] A. J. Granero, J. M. Razal, G. G. Wallace, M. in het Panhuis, Adv. Funct. Mater. 2008, 18, 3759.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXitlGk&md5=e089b63388ba828204093d2fb199c608CAS |
[46] M. Tako, T. Teruya, Y. Tamaki, T. Konishi, Colloid Polym. Sci. 2009, 287, 1445.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXhtFGqtbrK&md5=da041e13d817baaf8d35743bde545ad7CAS |