Introducing the Azlactone Functionality into Polymers through Controlled Radical Polymerization: Strategies and Recent Developments
H. T. Ho A , M. E. Levere A , D. Fournier A B , V. Montembault A , S. Pascual A and L. Fontaine A CA Equipe Méthodologie et Synthèse des Polymères, Institut des Molécules et des Matériaux du Mans, IMMM UMR CNRS 6283, Université du Maine, Avenue Olivier Messiaen, 72085 Le Mans Cedex 9, France.
B Present address: Unité des Matériaux Et Transformations (UMET, UMR CNRS 8207) Ingénierie des Systèmes Polymères Team, Université Lille 1, 59655 Villeneuve d’Ascq Cedex, France.
C Corresponding author. Email: laurent.fontaine@univ-lemans.fr
Australian Journal of Chemistry 65(8) 970-977 https://doi.org/10.1071/CH12192
Submitted: 11 April 2012 Accepted: 15 May 2012 Published: 2 August 2012
Abstract
Polymers containing the highly reactive azlactone group have emerged as a powerful platform useful in various application areas. This Highlight summarizes recent developments in the field of azlactone-derived polymers made in our group using controlled radical polymerizations (ATRP and RAFT) and ‘click’ chemistry methodology (thiol-Michael addition), leading to well defined reactive polymers.
References
[1] G. T. Hermanson, Bioconjugates Techniques 2008 (Elsevier Inc.: New-York).[2] G. Pasut, F. M. Veronese, Conjugates and Gene Delivery Systems 2006, 192, 95.
| 1:CAS:528:DC%2BD28Xjt12mtr0%3D&md5=8c7df81b5caafba4871b463ded940279CAS |
[3] D. Kessler, N. Metz, P. Theato, Macromol. Symp. 2007, 254, 34.
| 1:CAS:528:DC%2BD2sXhtValur3N&md5=34cbebfddf88f4fffe88db741c416526CAS |
[4] J.-F. Lutz, H. G. Börner, Prog. Polym. Sci. 2008, 33, 1.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXhsVKgurfF&md5=c3e54c459475f2ef924ca6fa04b8622aCAS |
[5] B. Le Droumaguet, J. Nicolas, Polym. Chem. 2010, 1, 563.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXhtlOhtb7J&md5=500bd40ec3dc06d06ed34da2bcec304eCAS |
[6] C. Boyer, X. Huang, M. R. Whittaker, V. Bulmus, T. P. Davis, Soft Matter 2011, 7, 1599.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXit1yrtLk%3D&md5=ffd48d9123fb3e29f07ad11032932a48CAS |
[7] R. M. Broyer, G. N. Grover, H. D. Maynard, Chem. Commun. 2011, 47, 2212.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXhs1arurg%3D&md5=5eff22d5b77d0f1ffede8ed8e6634947CAS |
[8] C. Boyer, V. Bulmus, T. P. Davis, V. Ladmiral, J. Liu, S. Perrier, Chem. Rev. 2009, 109, 5402.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXhtFCqtbvP&md5=2f4b95b050a6ce8b464972d503a30d01CAS |
[9] C. J. Hawker, A. W. Bosman, E. Harth, Chem. Rev. 2001, 101, 3661.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3MXnslaqsrc%3D&md5=f526c4187293bb403eb06f2cb420f495CAS |
[10] W. A. Braunecker, K. Matyjaszewski, Prog. Polym. Sci. 2007, 32, 93.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXhsFKmt7s%3D&md5=aa982f7314d46dfa06ebff5f5279465cCAS |
[11] J. Chiefari, Y. K. Chong, F. Ercole, J. Krstina, J. Jeffery, T. P. T. Le, R. T. A. Mayadunne, G. F. Meijs, C. L. Moad, G. Moad, E. Rizzardo, S. H. Thang, Macromolecules 1998, 31, 5559.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1cXkvF2gs7k%3D&md5=7b317daf025894dcec376159155980ccCAS |
[12] G. Moad, E. Rizzardo, S. H. Thang, Aust. J. Chem. 2006, 59, 669.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XhtFeqsr%2FM&md5=dbce39d0fb32872e6e9f9a55bde54681CAS |
[13] G. Moad, E. Rizzardo, S. H. Thang, Aust. J. Chem. 2009, 62, 1402.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXhsVers7bN&md5=fb2b73394696eb457b81af596f1722b8CAS |
[14] P. Theato, J. Polym. Sci. A Polym. Chem. 2008, 46, 6677.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXht1Gmt7zE&md5=ae0bac1e44ec2bc884b4aaaff1354b7bCAS |
[15] (a) H. Li, A. P. Bapat, M. Li, B. S. Sumerlin, Polym. Chem. 2011, 2, 323.For recent examples of the use of NHS esters in bioconjugation, see:
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXitVyiu74%3D&md5=9280ffe8bfc19e942c149145bc7e601bCAS |
(b) M. Chenal, C. Boursier, Y. Guillaneuf, M. Taverna, P. Couvreur, J. Nicolas, Polym. Chem. 2011, 2, 1523.
| Crossref | GoogleScholarGoogle Scholar |
(c) H. Kitano, H. Suzuki, K. Matsuura, K. Ohno, Langmuir 2010, 26, 6767.
| Crossref | GoogleScholarGoogle Scholar |
(d) Z. Zarafshani, T. Obata, J.-F. Lutz, Biomacromolecules 2010, 11, 2130.
| Crossref | GoogleScholarGoogle Scholar |
(e) L. McDowall, G. Chen, M. H. Stenzel, Macromol. Rapid Commun. 2008, 29, 1666.
| Crossref | GoogleScholarGoogle Scholar |
(f) S. Debasis, S. McRae, B. Cooper, Y. Hu, T. Emrick, J. Pratt, S. A. Charles, Biomacromolecules 2008, 9, 2891.
| Crossref | GoogleScholarGoogle Scholar |
(g) G. Chen, P. L. Felgner, Z. Guan, Biomacromolecules 2008, 9, 1745.
| Crossref | GoogleScholarGoogle Scholar |
(h) K. A. Aamer, G. N. Tew, J. Polym. Sci. A Polym. Chem. 2007, 45, 5618.
| Crossref | GoogleScholarGoogle Scholar |
(i) M. Bathfield, F. D’Agosto, R. Spitz, M. T. Charreyre, T. Delair, J. Am. Chem. Soc. 2006, 128, 2546.
| Crossref | GoogleScholarGoogle Scholar |
[16] (a) G. B. H. Chua, P. J. Roth, H. T. T. Duong, T. P. Davis, A. B. Lowe, Macromolecules 2012, 45, 1362.For recent examples of the use of PFP esters in bioconjugation, see:
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XhsFyltL4%3D&md5=ce9a3de7158a37118afd1d6f6cae66a4CAS |
(b) H. T. T. Duong, C. P. Marquis, M. R. Whittaker, T. P. Davis, C. Boyer, Macromolecules 2011, 44, 8008.
| Crossref | GoogleScholarGoogle Scholar |
(c) C. Boyer, M. R. Whittaker, T. P. Davis, J. Polym. Sci. A Polym. Chem. 2011, 49, 5245.
| Crossref | GoogleScholarGoogle Scholar |
(d) N. K. Singha, M. I. Gibson, B. P. Koiry, M. Danial, H.-A. Klok, Biomacromolecules 2011, 12, 2908.
| Crossref | GoogleScholarGoogle Scholar |
(e) P. J. Roth, F. D. Jochum, R. Zentel, P. Theato, Biomacromolecules 2010, 11, 238.
| Crossref | GoogleScholarGoogle Scholar |
(f) K. Wiss, P. Theato, J. Polym. Sci. A Polym. Chem. 2010, 48, 4758.
| Crossref | GoogleScholarGoogle Scholar |
(g) P. J. Roth, M. Haase, T. Bache, P. Theato, R. Zentel, Macromolecules 2010, 43, 895.
| Crossref | GoogleScholarGoogle Scholar |
(h) K. T. Wiss, O. D. Krishna, P. J. Roth, K. L. Kiick, P. Theato, Macromolecules 2009, 42, 3860.
| Crossref | GoogleScholarGoogle Scholar |
(i) C. Boyer, T. P. Davis, Chem. Commun. (Camb.) 2009, 6029.
| Crossref | GoogleScholarGoogle Scholar |
[17] S. M. Heilmann, J. K. Rasmussen, L. R. Krepski, J. Polym. Sci. A Polym. Chem. 2001, 39, 3655.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3MXnvVWlur0%3D&md5=47f9c03279aa16e3a5ecc6e31020941fCAS |
[18] J. K. Rasmussen, S. M. Heilmann, L. R. Krepski, K. M. Jensen, J. Mickelson, K. Z. Johnson, P. L. Coleman, D. S. Milbrath, M. M. Walker, React. Polym. 1992, 16, 199.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK38XisFKmtL0%3D&md5=04ae00a2edd4b17cb0271b3c4381d626CAS |
[19] H. C. Kolb, M. G. Finn, K. B. Sharpless, Angew. Chem. Int. Ed. 2001, 40, 2004.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3MXksVOis78%3D&md5=af962a1dfdc14748785758477eb28f57CAS |
[20] C. Barner-Kowollik, F. E. Du Prez, P. Espeel, C. J. Hawker, T. Junkers, H. Schlaad, W. Van Camp, Angew. Chem. Int. Ed. 2011, 50, 60.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXhs1alu73E&md5=cfb3de397e92dc873ce42d6384f43ff5CAS |
[21] A. D. Gough, E. Khosdel, R. Polywka, US 5 552 332 1995.
[22] A. Joiner, E. Khoshdel, R. Polywka, EP 0 792 141 B1 1995.
[23] M. E. Buck, D. M. Lynn, Polym. Chem. 2012, 3, 66.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXhsFGjsbrK&md5=baa998cf0c00081d310746c6fb05c37fCAS |
[24] M. E. Levere, H. T. Ho, S. Pascual, L. Fontaine, Polym. Chem. 2011, 2, 2878.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXhsV2qurfE&md5=d8d5db860fe0d2093cb8155aa9282fd5CAS |
[25] J. K. Rasmussen, S. M. Heilmann, L. R. Krepski, in Encyclopedia of Polymer Science and Engineering, 2nd Ed., 1988, Vol. 11, p 558 (Eds H. F. Mark, N. Bikales, C. G. Overberger, G. Menges) (Wiley-Interscience: New York).
[26] B. Guichard, C. Noel, D. Reyx, M. Thomas, S. Chevalier, J.-P. Senet, Macromol. Chem. Phys. 1998, 199, 1657.
| 1:CAS:528:DyaK1cXls1CnsL4%3D&md5=ab2c6a7804981de5ad287a141ec30734CAS |
[27] L. Fontaine, T. Lemêle, J.-C. Brosse, G. Sennyey, J.-P. Senet, D. Wattiez, Macromol. Chem. Phys. 2002, 203, 1377.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38XmsVSmtLo%3D&md5=a3aea29f526a18e67bed25b88e5bb4bcCAS |
[28] A. F. Jacobine, D. M. Glaser, P. J. Grabek, D. Mancini, M. Masterson, S. T. Nakos, M. A. Rakas, J. G. Woods, J. Appl. Polym. Sci. 1992, 45, 471.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK38XkslSktLg%3D&md5=a4d67cc9da48eea13bcc33e436002272CAS |
[29] A. F. Jacobine, S. T. Nakos, PCT Int. Appl. WO 9 312 098 1993.
[30] V. Lapinte, L. Fontaine, V. Montembault, I. Campistron, D. Reyx, J. Mol. Catal. Chem. 2002, 190, 117.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38Xosl2isrs%3D&md5=6f92755f89f215a9a745e062bbf5197aCAS |
[31] V. Lapinte, J.-C. Brosse, L. Fontaine, Macromol. Chem. Phys. 2004, 205, 824.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXjvFKjtr4%3D&md5=6aeb944ce6aa777d836daa9002e7f5ebCAS |
[32] R. Saint-Loup, J.-J. Robin, B. Boutevin, Macromol. Chem. Phys. 2002, 203, 199.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38Xht1Wiu7s%3D&md5=202c53e4cc06273f2cde2f828464013eCAS |
[33] H. T. Ho, M. E. Levere, J.-C. Soutif, V. Montembault, S. Pascual, L. Fontaine, Polym. Chem. 2011, 2, 1258.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXnt1Kgsrc%3D&md5=d623c92e011bcec461ea6a3ee4a3b792CAS |
[34] A. Guyomard, D. Fournier, S. Pascual, L. Fontaine, J.-F. Bardeau, Eur. Polym. J. 2004, 40, 2343.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXnt12ku74%3D&md5=0c1b80ff2675a2703455c3cc637b4571CAS |
[35] C. Lucchesi, S. Pascual, A. Jouanneaux, G. Dujardin, L. Fontaine, J. Polym. Sci. A Polym. Chem. 2007, 45, 3677.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXosFers7Y%3D&md5=97999f3bd037c9689ec8f744f6c9fdf4CAS |
[36] C. Lucchesi, S. Pascual, G. Dujardin, L. Fontaine, React. Funct. Polym. 2008, 68, 97.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXhsVehs73N&md5=ff03decce806547e92b7b772171f1af3CAS |
[37] C. Lucchesi, S. Pascual, L. Fontaine, A. Arboré, C. Maignan, G. Dujardin, Carbohydr. Res. 2010, 345, 844.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXjvFyksLw%3D&md5=e2be39d8720c538d03a42047313b7a6aCAS |
[38] A. Laquièvre, N. S. Allaway, J. Lyskawa, P. Woisel, J.-M. Lefebvre, D. Fournier, Macromol. Rapid Commun. 2012, 33, 848.
| Crossref | GoogleScholarGoogle Scholar |
[39] D. C. Tully, M. J. Roberts, B. H. Geierstanger, R. B. Grubbs, Macromolecules 2003, 36, 4302.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXjvFOhsLY%3D&md5=5818401bf64bd734f9bc9ab880e18b54CAS |
[40] D. Fournier, S. Pascual, L. Fontaine, Macromolecules 2004, 37, 330.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXjt1Om&md5=524a7822cd43e79b7528c56e20a78aa0CAS |
[41] D. Fournier, S. Pascual, V. Montembault, D. M. Haddleton, L. Fontaine, J. Comb. Chem. 2006, 8, 522.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XksFKltLg%3D&md5=dc8113123e7273925e31160ac596a50aCAS |
[42] M. Ejaz, S. Yamamoto, K. Ohno, Y. Tsujii, T. Fukuda, Macromolecules 1998, 31, 5934.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1cXkvF2nsr8%3D&md5=bc432128053364f48641f7b62472fc07CAS |
[43] K. Matyjaszewski, P. J. Miller, N. Shukla, B. Immaraporn, A. Gelman, B. B. Luokala, T. M. Siclovan, G. Kickelbick, T. Vallant, H. Hoffmann, T. Pakula, Macromolecules 1999, 32, 8716.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1MXnvVSmtb4%3D&md5=5017159f11f5b1edb3e5bc9722e8bae6CAS |
[44] D. Fournier, S. Pascual, V. Montembault, L. Fontaine, J. Polym. Sci. A Polym. Chem. 2006, 44, 5316.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XpsFensrg%3D&md5=64e82094599860080ac4e603e72605e7CAS |
[45] Y. Prai-In, K. Tankanya, B. Rutnakornpituk, U. Wichai, V. Montembault, S. Pascual, L. Fontaine, M. Rutnakornpituk, Polymer (Guildf.) 2012, 53, 113.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXhs1OitLzK&md5=4f533ef3c2bb54520b49577e317c8828CAS |
[46] M. Teodorescu, K. Matyjaszewski, Macromolecules 1999, 32, 4826.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1MXktFektLc%3D&md5=03b05b9f72a82333d4b48c7d48185905CAS |
[47] C. M. Schilli, A. H. E. Muller, E. Rizzardo, S. H. Thang, Y. K. Chong, in Advances in Controlled/Living Radical Polymerization, 2003, Vol. 854, pp. 603–618 (Ed. K. Matyjaszewski) (American Chemical Society: Washington).
[48] B. S. Lokitz, J. M. Messman, J. P. Hinestrosa, J. Alonzo, R. Verduzco, R. H. Brown, M. Osa, J. F. Ankner, S. M. Kilbey, Macromolecules 2009, 42, 9018.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXhtlCkurrN&md5=2088ac21ad50f993eb7e70c4988901baCAS |
[49] S. Pascual, T. Blin, P. J. Saikia, M. Thomas, P. Gosselin, L. Fontaine, J. Polym. Sci. A Polym. Chem. 2010, 48, 5053.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXhsVKjsrfJ&md5=49bd0d71f72d6972665c17b4d960b941CAS |
[50] S. Pascual, M. J. Monteiro, Eur. Polym. J. 2009, 45, 2513.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXhtVSnurfI&md5=c28ec4649a67dca95ee0c055ba3a96f8CAS |
[51] A. B. Lowe, Polym. Chem. 2010, 1, 17.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXlt1eltbo%3D&md5=95f6ca7bfd97dd22fba6f8cfa51ba76eCAS |
[52] G.-Z. Li, R. K. Randev, A. H. Soeriyadi, G. Rees, C. Boyer, Z. Tong, T. P. Davis, C. R. Becer, D. M. Haddleton, Polym. Chem. 2010, 1, 1196.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXhtl2msLrO&md5=d809707c783f07ad2b4aecc834b609f4CAS |
[53] A. Dondoni, Angew. Chem. Int. Ed. 2008, 47, 8995.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXhsVCnsrfO&md5=a6df1b7989ccddb7612cd7a19ca8c714CAS |
[54] H. T. Ho, F. Leroux, S. Pascual, V. Montembault, L. Fontaine, Macromol. Rapid Commun. 2012.