Enhanced Spin-capturing Polymerization and Radical Coupling Mediated by Cyclic Nitrones
Kayte Ranieri A , Matthias Conradi A , Pierre-Yves Chavant B , Veronique Blandin B , Christopher Barner-Kowollik C D and Tanja Junkers A DA Polymer Reaction Design Group, Institute for Materials Research, Universiteit Hasselt, Agoralaan, Gebouw D, BE-3590 Diepenbeek, Belgium.
B Département de Chimie Moléculaire, UMR-5250, ICMG FR-2607, CNRS, Université Joseph Fourier, BP-53, 38041 Grenoble Cedex 9, France.
C Preparative Macromolecular Chemistry, Institut für Technische Chemie und Polymerchemie, Karlsruhe Institute of Technology (KIT), Engesserstrasse 18, 76128 Karlsruhe, Germany.
D Corresponding authors. Email: christopher.barner-kowollik@kit.edu; tanja.junkers@uhasselt.be
Australian Journal of Chemistry 65(8) 1110-1116 https://doi.org/10.1071/CH12182
Submitted: 5 April 2012 Accepted: 1 May 2012 Published: 16 July 2012
Abstract
A series of cyclic nitrones have been tested for their spin-trapping activity in the enhanced spin-capturing polymerization of styrene and in nitrone-mediated radical coupling reactions. rac-2-Isopropyl-2,3-dimethyl-1-oxy-2,3-dihydro-imidazol-4-one was found to be the most efficient nitrone. The specific polystyrene macroradical addition rate to this nitrone was determined to be 8.0 × 103 L mol–1 s–1, which is by a factor of 10 higher than for previously studied compounds. Via enhanced spin-capturing polymerization, polymers in the range of oligomers to 30000 g mol–1 were obtained. A strong dependence of molecular weight on monomer conversion was observed, which can be explained by the high trapping rate. In nitrone-mediated radical coupling, almost ideal coupling of bromine-functional polymers was obtained and the successful introduction of the residual alkoxyamine functionality confirmed.
References
[1] E. H. H. Wong, T. Junkers, C. Barner-Kowollik, Polym. Chem. 2011, 2, 1008.| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXlsVKht7g%3D&md5=abcaa579ab7b04e38df93616518ca876CAS |
[2] E. H. H. Wong, T. Junkers, C. Barner-Kowollik, J. Polym. Sci. A Polym. Chem. 2008, 46, 7273.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXhsVSnurzI&md5=bd6a5f8b3890814992e93cb3d36aa45eCAS |
[3] E. H. H. Wong, M. H. Stenzel, T. Junkers, C. Barner-Kowollik, J. Polym. Sci. A Polym. Chem. 2009, 47, 1098.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXitValsbY%3D&md5=168d35a50c4cd37a404a7b3b12bb4cebCAS |
[4] T. Junkers, E. H. H. Wong, M. H. Stenzel, C. Barner-Kowollik, Macromolecules 2009, 42, 5027.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXotVGlt78%3D&md5=d53945dc143c651d728d13662a371556CAS |
[5] V. Sciannamea, R. Jerome, C. Detrembleur, Chem. Rev. 2008, 108, 1104.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXhsFehsLo%3D&md5=36bab6993bcf016b840112a2bada3526CAS |
[6] D. F. Grishin, L. L. Semenycheva, E. V. Kolyakina, Russ. J. Appl. Chem. 2001, 74, 494.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3MXnt1GntLY%3D&md5=3d1ffb7f3b9d0a61f07f0ecb1508f150CAS |
[7] C. J. Hawker, A. W. Bosman, E. Harth, Chem. Rev. 2001, 101, 3661.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3MXnslaqsrc%3D&md5=f526c4187293bb403eb06f2cb420f495CAS |
[8] (a) J. Chiefari, Y. K. Chong, F. Ercole, J. Krstina, J. Jeffery, T. P. T. Le, R. T. A. Mayadunne, G. Meijs, C. L. Moad, G. Moad, E. Rizzardo, S. H. Thang, Macromolecules 1998, 31, 5559.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1cXkvF2gs7k%3D&md5=7b317daf025894dcec376159155980ccCAS |
(b) G. Moad, E. Rizzardo, S. H. Thang, Aust. J. Chem. 2005, 58, 379.
| Crossref | GoogleScholarGoogle Scholar |
[9] K. Matyjaszewski, J. Xia, Chem. Rev. 2001, 101, 2921.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3MXms1ersrc%3D&md5=887d45a5f941d4ebc6c13e2e97535e39CAS |
[10] E. H. H. Wong, C. Boyer, M. H. Stenzel, C. Barner-Kowollik, T. Junkers, Chem. Commun. 2010, 1959.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXis1eitr0%3D&md5=7900d45b9dd101940643cb9713f0f5f5CAS |
[11] A. Debuigne, M. Hurtgen, C. Detrembleur, C. Jérôme, C. Barner-Kowollik, T. Junkers, Prog. Polym. Sci. 2012, 37, 1004.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XjsFGgsLg%3D&md5=fef8e235c821aa9890227b579f3f049dCAS |
[12] T. Junkers, M. H. Stenzel, T. P. Davis, C. Barner-Kowollik, Macromol. Rapid Commun. 2007, 28, 746.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXktVOhtro%3D&md5=2fc2d0e67234d3b36899ca272c36d075CAS |
[13] C. Zhang, Q. Wang, J. Polym. Sci. A Polym. Chem. 2011, 49, 612.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXhs1ejur%2FE&md5=dfea6a98f3c744131fd97c59a557b56cCAS |
[14] C. Yoshikawa, A. Goto, T. Fukuda, e-Polymers 2002, 13.
[15] E. H. H. Wong, M. H. Stenzel, T. Junkers, C. Barner-Kowollik, Macromolecules 2010, 43, 3785.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXjt1GjsrY%3D&md5=e247a1f0e3a44e7ff8554c85c8c108b3CAS |
[16] C. Detrembleur, A. Debuigne, O. Altintas, M. Conradi, E. H. H. Wong, C. Jérôme, C. Barner-Kowollik, T. Junkers, Polym. Chem. 2012, 3, 135.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXhsFGjsbrE&md5=e4646cea69d6bf29ab45a97d395cc3adCAS |
[17] E. H. H. Wong, O. Altintas, M. H. Stenzel, C. Barner-Kowollik, T. Junkers, Chem. Commun. 2011, 5491.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXlt1Cks74%3D&md5=01bf357192cdeda86babbfedec76ea2cCAS |
[18] M. Thiverny, C. Philouze, P. Y. Chavant, V. Blandin, Org. Biomol. Chem. 2010, 8, 864.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXhsVyiur8%3D&md5=e158961a7881da509d1de1f906f6f17cCAS |
[19] M. Thiverny, E. Demory, B. Baptiste, C. Philouze, P. Y. Chavant, V. Blandin, Tetrahedron Asymmetry 2011, 22, 1266.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXhtFehsL7I&md5=7cdf0beeec31d5da610fd892f07f79cdCAS |
[20] M. Thiverny, D. Farran, C. Philouze, V. Blandin, P. Y. Chavant, Tetrahedron Asymmetry 2011, 22, 1274.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXhtFehsL7J&md5=57ec0c10a5c3f42d27ad5c56542780a0CAS |
[21] L. Zang, E. H. H. Wong, C. Barner-Kowollik, T. Junkers, Polymer 2010, 51, 3821.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXpvFegsr8%3D&md5=91c61059319ae9b0ea42a39fad278712CAS |
[22] M. Buback, R. G. Gilbert, R. A. Hutchinson, B. Klumpermann, F.-D. Kuchta, B. Manders, K. F. O’Driscoll, G. T. Russell, J. Schweer, Macromol. Chem. Phys. 1995, 196, 3267.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2MXoslWns74%3D&md5=2c1bc157b76ded56d49c862dbb6f2365CAS |
[23] V. Percec, T. Guliashvili, J. S. Ladislaw, A. Wistrand, A. Stjerndahl, M. J. Sienkowska, M. J. Monteiro, S. Sahoo, J. Am. Chem. Soc. 2006, 128, 14156.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XhtVaqs7jK&md5=2c1d0794956b41daeb48d5821bafd0faCAS |