Free Standard AU & NZ Shipping For All Book Orders Over $80!
Register      Login
Australian Journal of Chemistry Australian Journal of Chemistry Society
An international journal for chemical science
RESEARCH FRONT

Gold/Palladium Bimetallic Alloy Nanoclusters Stabilized by Chitosan as Highly Efficient and Selective Catalysts for Homocoupling of Arylboronic Acid

Onsulang Sophiphun A , Jatuporn Wittayakun A , Raghu Nath Dhital B , Setsiri Haesuwannakij B , Arumugam Murugadoss C and Hidehiro Sakurai B C D
+ Author Affiliations
- Author Affiliations

A School of Chemistry, Institute of Science, Suranaree University of Technology, Nakhon Ratchasima 30000, Thailand.

B Department of Functional Molecular Science, School of Physical Sciences, The Graduate University for Advanced Studies (SOKENDAI), Myodaiji, Okazaki 444-8787, Japan.

C Research Center for Molecular Scale Nanoscience, Institute for Molecular Science, Myodaiji, Okazaki 444-8787, Japan.

D Corresponding author. Email: hsakurai@ims.ac.jp

Australian Journal of Chemistry 65(9) 1238-1243 https://doi.org/10.1071/CH12175
Submitted: 30 March 2012  Accepted: 9 May 2012   Published: 16 July 2012

Abstract

Aerobic oxidative homocoupling of arylboronic acid under acidic aqueous conditions (pH 4.0) using bimetallic Au/Pd alloy nanoclusters stabilized by chitosan has been investigated. It was found that a Au0.81Pd0.19 catalyst (3.1 ± 0.8 nm) exhibited superior catalytic activities as compared to monometallic Au (2.3 ± 0.3 nm) and other series of bimetallic nanoclusters, giving the corresponding biaryls in nearly quantitative yield.


References

[1]  (a) R. Ferrando, J. Jellineck, R. L. Johnston, Chem. Rev. 2008, 108, 845.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXjtVCkt7w%3D&md5=bedb28e6228b5c04f0206c127642bf45CAS |
      (b) N. Toshima, T. Yonezawa, New J. Chem. 1998, 22, 1179.
         | Crossref | GoogleScholarGoogle Scholar |
      (c) G. J. Hutchings, Chem. Commun. 2008, 10, 1148.
         | Crossref | GoogleScholarGoogle Scholar |
      (d) M. Chen, D. Kumar, C.-W. Yi, D. W. Goodman, Science 2005, 310, 291.
         | Crossref | GoogleScholarGoogle Scholar |
      (e) S. Yudha, R. N. Dhital, H. Sakurai, Tetrahedron Lett. 2011, 52, 2633.
         | Crossref | GoogleScholarGoogle Scholar |
      (f) L. Kesavan, R. Tiruvalam, M. H. A. Rahim, M. I. B. Saiman, D. I. Enashe, R. L. Jenkins, N. Dimitratos, J. A. Lopez-Sanchez, S. H. Taylor, D. W. Knight, C. J. Kiely, G. J. Hutchings, Science 2011, 331, 195.
         | Crossref | GoogleScholarGoogle Scholar |
      (g) H. Zhang, T. Watanabe, M. Okumura, M. Haruta, N. Toshima, Nat. Mater. 2012, 11, 49.
         | Crossref | GoogleScholarGoogle Scholar |

[2]  (a) H. Zhang, Y. Xie, Z. Sun, R. Tao, C. Huang, Y. Zhao, Z. Liu, Langmuir 2011, 27, 1152.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXhs1SrsL%2FI&md5=c9d356014d601e29db73cedf18c797c3CAS |
      (b) A. Villa, C. Campione, L. Prati, Catal. Lett. 2007, 115, 133.
         | Crossref | GoogleScholarGoogle Scholar |
      (c) A. M. Venezia, V. L. Parola, G. Deganello, B. Pawelec, J. L. G. Fierro, J. Catal. 2003, 215, 317.
         | Crossref | GoogleScholarGoogle Scholar |

[3]  T. Tsukuda, H. Tsunoyama, H. Sakurai, Chem. Asian J. 2011, 6, 736.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXisVaitLo%3D&md5=35606ca55fb360c7ad8266632fc51b57CAS |

[4]  H. Tsunoyama, H. Sakurai, N. Ichikuni, Y. Negishi, T. Tsukuda, Langmuir 2004, 20, 11293.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXpslems7k%3D&md5=1e288acc4a9d3abcdd81c5b96594fe86CAS |

[5]  (a) S. Carrettin, J. Guzman, A. Corma, Angew. Chem. Int. Ed. 2005, 44, 2242.For gold catalyzed homocoupling reactions see:
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXjslWru7o%3D&md5=1f169589ec04b6b680ec8b6b8969c0bfCAS |
      (b) S. Carrettin, A. Corma, M. Iglesias, F. Sanchez, Appl. Catal. A Gen. 2005, 291, 247.
         | Crossref | GoogleScholarGoogle Scholar |
      (c) N. G. Willis, J. Guzman, Appl. Catal. A 2008, 339, 68.
         | Crossref | GoogleScholarGoogle Scholar |
      (d) L. Chaicharoenwimolkul, A. Munmai, S. Chairam, U. Tewasekson, S. Sapudom, Y. Lakliang, E. Somsook, Tetrahedron Lett. 2008, 49, 7299.
         | Crossref | GoogleScholarGoogle Scholar |
      (e) C. González-Arellano, A. Corma, M. Iglesias, F. Sánchez, J. Catal. 2006, 238, 497.
         | Crossref | GoogleScholarGoogle Scholar |

[6]  H. G. Kuivila, J. Am. Chem. Soc. 1954, 76, 870.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaG2cXjsVyitQ%3D%3D&md5=ce7e815015ca5bbb39596bc6c8740039CAS |

[7]  H. Sakurai, H. Tsunoyama, T. Tsukuda, J. Organomet. Chem. 2007, 692, 368.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXivFCm&md5=5059008099d7b8770aa7ef0337594b34CAS |

[8]  R. N. Dhital, A. Murugadoss, H. Sakurai, Chem. Asian J. 2012, 7, 55.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXht1yjs7%2FE&md5=dfab0b2f5e0e02f0a6c74bd4922685b6CAS |

[9]  A. Murugadoss, H. Sakurai, J. Mol. Catal. Chem. 2011, 341, 1.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXmsVymt7s%3D&md5=abb937097f45248210e7b7541a613816CAS |

[10]  (a) R. W. J. Scott, O. M. Wilson, S.-K. Oh, E. A. Kenik, R. M. Crooks, J. Am. Chem. Soc. 2004, 126, 15583.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXptlSisrk%3D&md5=249aa8f962a14a36d986d1a22b5d5ba1CAS |
      (b) N. Toshima, M. Harada, Y. Yamazaki, K. Asakura, J. Phys. Chem. 1992, 96, 9927.
         | Crossref | GoogleScholarGoogle Scholar |
      (c) J. A. Creighton, D. G. Eadon, J. Chem. Soc., Faraday Trans. 1991, 87, 3881.
         | Crossref | GoogleScholarGoogle Scholar |

[11]  R. N. Dhital, H. Sakurai, Chem. Lett. 2012, 41, 630.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38Xptl2lur4%3D&md5=f02620c93917625c95646a60c74fb2a6CAS |

[12]  H. Tsunoyama, N. Ichikuni, H. Sakurai, T. Tsukuda, J. Am. Chem. Soc. 2009, 131, 7086.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXltlaruro%3D&md5=1feeb8ae6c0cf93841372ff12c5890b0CAS |

[13]  N. K. Chaki, H. Tsunoyama, Y. Negishi, H. Sakurai, T. Tsukuda, J. Phys. Chem. C. 2007, 111, 4885.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXisF2hsrk%3D&md5=6dfe487daf3f05c3f25ee6802d22e2aeCAS |

[14]  A. Murugadoss, N. Kai, H. Sakurai, Nanoscale 2012, 4, 1280.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38Xhslakt7k%3D&md5=3fd9e5be69147f769b3cee3457590808CAS |

[15]  C. Hansch, A. Leo, R. W. Taft, Chem. Rev. 1991, 91, 165.The Hammett substituent constants were taken from reported literature:
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK3MXhs1ehsLo%3D&md5=a54730ac5bb282c7be482508a5e0092eCAS |