Free Standard AU & NZ Shipping For All Book Orders Over $80!
Register      Login
Australian Journal of Chemistry Australian Journal of Chemistry Society
An international journal for chemical science
RESEARCH FRONT

Electroluminescence of Hybrid Self-Organised Fibres Incorporating CdTe Quantum Dots

Masanori Ando A B , Chie Hosokawa A , Ping Yang A and Norio Murase A B
+ Author Affiliations
- Author Affiliations

A Health Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Kansai Center, 1-8-31 Midorigaoka, Ikeda, Osaka 563-8577, Japan.

B Corresponding authors. Email: m-ando@aist.go.jp; n-murase@aist.go.jp

Australian Journal of Chemistry 65(9) 1257-1259 https://doi.org/10.1071/CH12127
Submitted: 1 March 2012  Accepted: 6 June 2012   Published: 10 July 2012

Abstract

We demonstrated electroluminescence from hybrid 1D glass fibres incorporating CdTe quantum dots with a thin SiO2 overlayer which contains CdS-like clusters. The self-organised fibres, prepared by refluxing precursor nanowires, exhibited red electroluminescence on Au interdigitated array electrodes at room temperature. Although fluctuation with time was observed in the electroluminescence, relatively low threshold electric field (2.6 × 106 V m–1) suggests that the CdTe quantum dots-based hybrid fibres are expected to be applied to low voltage driven electroluminescent devices.


References

[1]  A. L. Rogach, N. Gaponik, J. M. Lupton, C. Bertoni, D. E. Gallardo, S. Dunn, N. L. Pira, M. Paderi, P. Repetto, S. G. Romanov, C. O’Dwyer, C. M. S. Torres, A. Eychmüller, Angew. Chem. Int. Edit. 2008, 47, 6538.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXhtVKhsbfM&md5=0aeec6e0632c15f3f2734d92b69c68a6CAS |

[2]  M. Gao, S. Kirstein, A. L. Rogach, H. Weller, H. Möhwald, Proceedings of the 9th Cimtec-World Forum on New Materials, Symposium X–Innovative Light Emitting Materials 1999, 347 (Eds P. Vincenzini, G. C. Righini) (Techna: Faenza).

[3]  M. Gao, C. Lesser, S. Kirstein, H. Möhwald, A. L. Rogach, H. Weller, J. Appl. Phys. 2000, 87, 2297.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3cXhtlSltro%3D&md5=3a45689fe04dc4ffbb8619bbca5618cdCAS |

[4]  C. Bertoni, D. Gallardo, S. Dunn, N. Gaponik, A. Eychmüller, Appl. Phys. Lett. 2007, 90, 034107.
         | Crossref | GoogleScholarGoogle Scholar |

[5]  C. Li, N. Murase, Chem. Lett. 2005, 34, 92.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXmtlCnsA%3D%3D&md5=308b1a5c410f637d97e5ca2c89978404CAS |

[6]  N. Murase, Semiconductor Nanomaterials, Nanomaterials for the Life Sciences 2010, Volume 6, p. 393 (Wiley-VCH: Weinheim).

[7]  M. Ando, C. Li, N. Murase, Nanoparticle Technology Handbook 2007, p. 558 (Elsevier B.V.: Amsterdam).

[8]  P. Yang, M. Ando, N. Murase, Adv. Mater. 2009, 21, 4016.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXht12hur3L&md5=5a228fce45dbe542da21bc191ab837caCAS |

[9]  N. Murase, P. Yang, Small 2009, 5, 800.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXks1Ciur4%3D&md5=5f7b38260962f93b997a8e20139582aeCAS |