Photochemical Upconversion Enhanced Solar Cells: Effect of a Back Reflector
Tim F. Schulze A , Yuen Yap Cheng A , Burkhard Fückel A , Rowan W. MacQueen A , Andrew Danos A , Nathaniel J. L. K. Davis A , Murad J. Y. Tayebjee A , Tony Khoury A , Raphaël G. C. R. Clady A , N. J. Ekins-Daukes B , Maxwell J. Crossley A , Bernd Stannowski C , Klaus Lips D and Timothy W. Schmidt A E FA School of Chemistry, The University of Sydney, NSW 2006, Australia.
B Department of Physics and the Grantham Institute for Climate Change, Imperial College, London, UK SW7 2AZ.
C Competence Centre Thin-Film- and Nanotechnology for Photovoltaics Berlin (PVcomB), Helmholtz-Zentrum Berlin für Materialien und Energie, 12489 Berlin, Germany.
D Institute for Silicon Photovoltaics, Helmholtz-Zentrum Berlin für Materialien und Energie, 12489 Berlin, Germany.
E Institute of Photonics and Optical Science, The University of Sydney, NSW 2006, Australia.
F Corresponding author. Email: t.schmidt@chem.usyd.edu.au
Australian Journal of Chemistry 65(5) 480-485 https://doi.org/10.1071/CH12117
Submitted: 24 February 2012 Accepted: 14 March 2012 Published: 14 May 2012
Abstract
Photochemical upconversion is applied to a hydrogenated amorphous silicon solar cell in the presence of a back-scattering layer. A custom-synthesized porphyrin was utilized as the sensitizer species, with rubrene as the emitter. Under a bias of 24 suns, a peak external quantum efficiency (EQE) enhancement of ~2 % was observed at a wavelength of 720 nm. Without the scattering layer, the EQE enhancement was half this value, indicating that the effect of the back-scatterer is to double the efficacy of the upconverting device. The results represent an upconversion figure of merit of 3.5 × 10–4 mA cm–2 sun–2, which is the highest reported to date.
References
[1] R. E. Smalley, MRS Bull. 2005, 30, 412.| Crossref | GoogleScholarGoogle Scholar |
[2] N. S. Lewis, Science 2007, 315, 798.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXhsVShsrs%3D&md5=c34d135dd8ea9dfb14b919681d59ad4eCAS |
[3] W. Shockley, H. J. Queisser, J. Appl. Phys. 1961, 32, 510.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaF3MXpslGqsQ%3D%3D&md5=227c301fa2503ebf351c299569d3fcf0CAS |
[4] M. A. Green, Third Generation Photovoltaics: Advances Solar Energy Conversion (Springer-Verlag, Heidelberg, 2003).
[5] M. A. Green, Prog. Photovolt. Res. Appl. 2009, 17, 183.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXmtVSms7k%3D&md5=66f2c327f33e46f04c3776095aa0bdeeCAS |
[6] M. Grätzel, Nature 2001, 414, 338.
| Crossref | GoogleScholarGoogle Scholar |
[7] G. Li, V. Shrotriya, J. S. Huang, Y. Yao, T. Moriarty, K. Emery, Y. Yang, Nat. Mater. 2005, 4, 864.
| 1:CAS:528:DC%2BD2MXht1ShsbnO&md5=70fb4db60ac34c79d18d453bcae863d4CAS |
[8] A. Yella, H.-W. Lee, H. N. Tsao, C. Yi, A. K. Chandiran, M. Khaja Nazeeruddin, E. W.-G. Diau, C.-Y. Yeh, S. M. Zakeeruddin, M. Graetzel, Science 2011, 334, 629.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXhtlyqu7nI&md5=e133a1a57aae1b4de8c382af9246514dCAS |
[9] M. C. Hanna, A. J. Nozik, J. Appl. Phys. 2006, 100, 074510.
| Crossref | GoogleScholarGoogle Scholar |
[10] L. C. Hirst, N. J. Ekins-Daukes, Prog. Photovolt. Res. Appl. 2011, 19, 286.
| Crossref | GoogleScholarGoogle Scholar |
[11] T. Trupke, M. A. Green, P. Würfel, J. Appl. Phys. 2002, 92, 4117.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38XntF2msLc%3D&md5=ddbdfd72ba14ce6e3042f9c7357fd0a5CAS |
[12] T. N. Singh-Rachford, F. N. Castellano, Coord. Chem. Rev. 2010, 254, 2560.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXhtFWgsrvI&md5=3a1856cb4ec0505b2a130131ed72f549CAS |
[13] T. N. Singh-Rachford, A. Haefele, R. Ziessel, F. N. Castellano, J. Am. Chem. Soc. 2008, 130, 16164.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXhtlGku7vE&md5=745fb832ef5dab7f870a4aee95723507CAS |
[14] Y. Cheng, T. Khoury, R. G. C. R. Clady, M. J. Y. Tayebjee, N. J. Ekins-Daukes, M. J. Crossley, T. W. Schmidt, Phys. Chem. Chem. Phys. 2010, 12, 66.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXhsFektbjK&md5=530532544cf06091982db31fb529f048CAS |
[15] Y. Cheng, B. Fückel, T. Khoury, R. G. C. R. Clady, M. J. Y. Tayebjee, N. J. Ekins-Daukes, M. J. Crossley, T. W. Schmidt, J. Phys. Chem. Lett. 2010, 1, 1795.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXms1Sisro%3D&md5=f3944fe9858cecf3b91581eb7d900242CAS |
[16] R. S. Khnayzer, J. Blumhoff, J. A. Harrington, A. Haefele, F. Deng, F. N. Castellano, Chem. Commun. (Camb.) 2012, 48, 209.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXhsFGqurfI&md5=9ca5b15d10aa7f89a727c4b62761da43CAS |
[17] Y. Y. Cheng, B. Fückel, R. W. MacQueen, T. Khoury, R. G. C. R. Clady, T. F. Schulze, N. J. Ekins-Daukes, M. J. Crossley, B. Stannowski, K. Lips, T. W. Schmidt, Energy Environ. Sci. 2012,
| Crossref | GoogleScholarGoogle Scholar |
[18] T. Khoury, M. J. Crossley, Chem. Commun. (Camb.) 2007, 46, 4851.
| Crossref | GoogleScholarGoogle Scholar |
[19] T. N. Singh-Rachford, F. N. Castellano, Inorg. Chem. 2009, 48, 2541.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXhslyjs70%3D&md5=77a53b1c077dab8997c4af192f17ea3bCAS |
[20] D. Sweet, E. Ott, J. A. Yorke, Nature 1999, 399, 315.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1MXjs1Wgt78%3D&md5=a9e5e5570d4e171e93e22316bb381732CAS |
[21] J. de Wild, J. K. Rath, A. Meijerink, W. G. J. H. M. van Sark, R. E. I. Schropp, Sol. Energy Mater. Sol. Cells 2010, 94, 2395.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXht1elt7rP&md5=6e927c77a1bbff5fbdc58527e551f214CAS |
[22] S. Baluschev, F. Yu, T. Miteva, S. Ahl, A. Yasuda, G. Nelles, W. Knoll, G. Wegner, Nano Lett. 2005, 5, 2482.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXht1WisbvN&md5=7799a4d2561e498fc88efff815a2a3d3CAS |