Characterisation of Calmodulin Structural Transitions by Ion Mobility Mass Spectrometry
Antonio N. Calabrese A , Lauren A. Speechley A and Tara L. Pukala A BA School of Chemistry & Physics, The University of Adelaide, Adelaide, SA 5005, Australia.
B Corresponding author. Email: tara.pukala@adelaide.edu.au
Australian Journal of Chemistry 65(5) 504-511 https://doi.org/10.1071/CH12047
Submitted: 27 January 2012 Accepted: 7 April 2012 Published: 8 May 2012
Abstract
This study demonstrates the ability of travelling wave ion mobility-mass spectrometry to measure collision cross-sections of ions in the negative mode, using a calibration based approach. Here, negative mode ion mobility-mass spectrometry was utilised to understand structural transitions of calmodulin upon Ca2+ binding and complexation with model peptides melittin and the plasma membrane Ca2+ pump C20W peptide. Coexisting calmodulin conformers were distinguished on the basis of their mass and cross-section, and identified as relatively folded and unfolded populations, with good agreement in collision cross-section to known calmodulin geometries. Titration of calcium tartrate to physiologically relevant Ca2+ levels provided evidence for intermediately metalated species during the transition from apo- to holo-calmodulin, with collision cross-section measurements indicating that higher Ca2+ occupancy is correlated with more compact structures. The binding of two representative peptides which exemplify canonical compact (melittin) and extended (C20W) peptide-calmodulin binding models has also been interrogated by ion mobility mass spectrometry. Peptide binding to calmodulin involves intermediates with metalation states from 1–4 Ca2+, which demonstrate relatively collapsed structures, suggesting neither the existence of holo-calmodulin or a pre-folded calmodulin conformation is a prerequisite for binding target peptides or proteins. The biological importance of the different metal unsaturated calmodulin complexes, if any, is yet to be understood.
References
[1] A. Catalano, D. H. O’Day, Cell. Signal. 2008, 20, 277.| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXislKntw%3D%3D&md5=c392418baf6512847862dd9fdc9ff8c1CAS |
[2] K. P. Lu, A. R. Means, Endocr. Rev. 1993, 14, 40.
| 1:CAS:528:DyaK3sXitV2ktr4%3D&md5=173ed0dff316c1f2e099ac63239039e8CAS |
[3] A. Ravindran, Q. Z. Lao, J. B. Harry, P. Abrahimi, E. Kobrinsky, N. M. Soldatov, Proc. Natl. Acad. Sci. USA 2008, 105, 8154.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXns1ajtbg%3D&md5=1366c846a62a8fb755b59269206a8bcfCAS |
[4] J. D. Johnson, J. S. Mills, Med. Res. Rev. 1986, 6, 341.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL28XltFSmtrs%3D&md5=ce3716aeefeb1ac74cbae2d1b635cddaCAS |
[5] Calmodulin and Cell Functions 1980 (Eds D. M. Watterson, F. F. Vincenzi) (New York Academy of Sciences: New York, NY).
[6] A. R. Means, J. S. Tash, J. G. Chafouleas, Physiol. Rev. 1982, 62, 1.
| 1:CAS:528:DyaL38XotFeqsA%3D%3D&md5=e763dd4c63518aa44164f6f827389d64CAS |
[7] W. J. Chazin, Nat. Struct. Biol. 1995, 2, 707.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2MXnvFajsbw%3D&md5=43bef010b55f1068f4fbbcdce9f2f696CAS |
[8] H. Kuboniwa, N. Tjandra, S. Grzesiek, H. Ren, C. B. Klee, A. Bax, Nat. Struct. Biol. 1995, 2, 768.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2MXnvFajtrk%3D&md5=a37392886ee8169dff4daee794d099dbCAS |
[9] M. Zhang, T. Tanaka, M. Ikura, Nat. Struct. Biol. 1995, 2, 758.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2MXnvFajtrg%3D&md5=58d30528e4b9712c40c4515aa9f18d30CAS |
[10] G. Barbato, M. Ikura, L. E. Kay, R. W. Pastor, A. Bax, Biochemistry – US 1992, 31, 5269.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK38XktVaqt7s%3D&md5=c7913263883241d8e39e3d3c7b88efb0CAS |
[11] R. Chattopadhyaya, W. E. Meador, A. R. Means, F. A. Quiocho, J. Mol. Biol. 1992, 228, 1177.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK3sXps1GgtA%3D%3D&md5=97ba6fbf76b27ba711068ffa8a1f1932CAS |
[12] M. Ikura, G. M. Clore, A. M. Gronenborn, G. Zhu, C. B. Klee, A. Bax, Science 1992, 256, 632.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK38XltVKlsr0%3D&md5=bb15c4de02dfa3c1fa51c7f0934a5b12CAS |
[13] S. W. Vetter, E. Leclerc, Eur. J. Biochem. 2003, 270, 404.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXhtFaht7c%3D&md5=85f5d6ac9f00941fde34426038eb4a29CAS |
[14] A. R. Rhoads, F. Friedberg, FASEB J. 1997, 11, 331.
| 1:CAS:528:DyaK2sXjtVWmtr8%3D&md5=a062348e7c818381220dd8364da6702bCAS |
[15] M. Aoyagi, A. S. Arvai, J. A. Tainer, E. D. Getzoff, EMBO J. 2003, 22, 766.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXit1yhu78%3D&md5=ee5933288d2134ac531e5c59542e80f1CAS |
[16] B. Elshorst, M. Hennig, H. Forsterling, A. Diener, M. Maurer, P. Schulte, H. Schwalbe, C. Griesinger, J. Krebs, H. Schmid, T. Vorherr, E. Carafoli, Biochemistry – US 1999, 38, 12320.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1MXltl2jtr4%3D&md5=b35732eed3f97857722e8b6f8efb6a36CAS |
[17] C. Y. Huang, V. Chau, P. B. Chock, J. H. Wang, R. K. Sharma, Proc. Natl. Acad. Sci. USA 1981, 78, 871.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL3MXhtlCrtb0%3D&md5=b9ce520ef3aa53386106e2d99dfeba9aCAS |
[18] Y. Maulet, J. A. Cox, Biochemistry – US 1983, 22, 5680.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL3sXlvFSjsLo%3D&md5=2026b38a5fd8d61e8419f76e50dfe728CAS |
[19] C. B. Klee, Interaction of Calmodulin with Ca2+ and Target Proteins, in Calmodulin 1988, pp. 35–56 (Eds P. Cohen, C. B. Klee) (Elsevier: New York, NY).
[20] J. M. Shifman, M. H. Choi, S. Mihalas, S. L. Mayo, M. B. Kennedy, Proc. Natl. Acad. Sci. USA 2006, 103, 13968.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XhtVCmtbfL&md5=046c73940305b30ec12b10586d49cbeaCAS |
[21] T. J. Hill, D. Lafitte, J. I. Wallace, H. J. Cooper, P. O. Tsvetkov, P. J. Derrick, Biochemistry – US 2000, 39, 7284.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3cXjsVaqsbo%3D&md5=748d788f80f2da47ae9db85e4886794eCAS |
[22] H. Y. Park, S. A. Kim, J. Korlach, E. Rhoades, L. W. Kwok, W. R. Zipfel, M. N. Waxham, W. W. Webb, L. Pollack, Proc. Natl. Acad. Sci. USA 2008, 105, 542.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXpvV2ltw%3D%3D&md5=424305f4933d987d78e9b7dd8da41e6bCAS |
[23] M. A. Schumacher, A. F. Rivard, H. P. Bachinger, J. P. Adelman, Nature 2001, 410, 1120.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3MXjsVCrt70%3D&md5=c7ae0681249aa12286cb73f3a93e9a01CAS |
[24] J. Pan, L. Konermann, Biochemistry – US 2010, 49, 3477.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXktVeqtrg%3D&md5=4291f2ca6240974d32f754f91d009514CAS |
[25] J. B. Sperry, R. Y. Huang, M. M. Zhu, D. L. Rempel, M. L. Gross, Int. J. Mass Spectrom. Ion Process. 2011, 302, 85.
| 1:CAS:528:DC%2BC3MXkslGqsr4%3D&md5=49a8faed809ed7dc9367c12e8a5f9b4bCAS |
[26] K. Dimova, S. Kalkhof, I. Pottratz, C. Ihling, F. Rodriguez-Castaneda, T. Liepold, C. Griesinger, N. Brose, A. Sinz, O. Jahn, Biochemistry – US 2009, 48, 5908.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXmsleis7Y%3D&md5=1c7bfff4f69bdaea3e39e105b57c31ffCAS |
[27] T. Ly, R. R. Julian, J. Am. Soc. Mass Spectrom. 2008, 19, 1663.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXhtlOhtb7M&md5=dcb7f0494aed31fc60ec13dab67e9a59CAS |
[28] J. W. Wong, S. D. Maleknia, K. M. Downard, J. Am. Soc. Mass Spectrom. 2005, 16, 225.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXht1CqtLk%3D&md5=757a36ff59aed1caecb878ba39d09bc5CAS |
[29] O. Nemirovskiy, D. E. Giblin, M. L. Gross, J. Am. Soc. Mass Spectrom. 1999, 10, 711.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1MXkvFert70%3D&md5=ee9a0d7bf91f3886a1c760d69877efedCAS |
[30] T. L. Pukala, T. Urathamakul, S. J. Watt, J. L. Beck, R. J. Jackway, J. H. Bowie, Rapid Commun. Mass Spectrom. 2008, 22, 3501.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXhsVOhu7vF&md5=e00f9b09dfd18a0d79559dc3b3168829CAS |
[31] T. Wyttenbach, M. Grabenauer, K. Thalassinos, J. H. Scrivens, M. T. Bowers, J. Phys. Chem. B 2010, 114, 437.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXhsFCnsr%2FO&md5=a6f7c19281fb4be1b91fd3d38d0ee39fCAS |
[32] P. A. Faull, K. E. Korkeila, J. M. Kalapothakis, A. Gray, B. J. McCullough, P. E. Barran, Int. J. Mass Spectrom. 2009, 283, 140.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXmtVSrtLw%3D&md5=0796e754ab00f596cfb761f4148870bfCAS |
[33] S. D. Pringle, K. Giles, J. L. Wildgoose, J. P. Williams, S. E. Slade, K. Thalassinos, R. H. Bateman, M. T. Bowers, J. H. Scrivens, Int. J. Mass Spectrom. 2007, 261, 1.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXhsFCru7c%3D&md5=5d586c711d89f918e8d283e9118c5bf1CAS |
[34] J. Wildgoose, T. McKenna, C. Hughes, K. Giles, S. Pringle, I. Campuzano, J. Langridge, R. H. Bateman, Mol. Cell. Proteomics 2006, 5, S14.
[35] B. T. Ruotolo, J. L. Benesch, A. M. Sandercock, S. J. Hyung, C. V. Robinson, Nat. Protoc. 2008, 3, 1139.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXotFakurc%3D&md5=868dd5802373d670b4ef241257db9cf9CAS |
[36] A. A. Shvartsburg, R. D. Smith, Anal. Chem. 2008, 80, 9689.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXhtlemt73E&md5=1bdb1568f8d986b7c404408c90a08966CAS |
[37] T. H. Crouch, C. B. Klee, Biochemistry – US 1980, 19, 3692.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL3cXlt1Ogt7c%3D&md5=30165c0de3252b8687c9a65e41f55dd0CAS |
[38] C. A. Scarff, K. Thalassinos, G. R. Hilton, J. H. Scrivens, Rapid Commun. Mass Spectrom. 2008, 22, 3297.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXhtleiu73F&md5=d7a97feb9c9bc0ac3123a3b13ea16229CAS |
[39] K. Thalassinos, M. Grabenauer, S. E. Slade, G. R. Hilton, M. T. Bowers, J. H. Scrivens, Anal. Chem. 2009, 81, 248.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXhsVKisLvM&md5=966d917a27f46134de17b6d86f2b4e86CAS |
[40] D. E. Clemmer, Clemmer Collision Cross-Section Database (accessed 20 January 2012). Available from: http://www.indiana.edu/~clemmer/
[41] M. F. Mesleh, J. M. Hunter, A. A. Shvartsburg, G. C. Schatz, M. F. Jarrold, J. Phys. Chem. 1996, 100, 16082.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK28XlsFCqu7w%3D&md5=7aea3bc34cae03cf40cfd76d292108fbCAS |
[42] A. A. Shvartsburg, M. F. Jarrold, Chem. Phys. Lett. 1996, 261, 86.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK28XlvFKnsbk%3D&md5=c7ca577bbf78ec02e5746d444a3f7203CAS |
[43] P. Hu, Q. Z. Ye, J. A. Loo, Anal. Chem. 1994, 66, 4190.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2cXmsFShs7k%3D&md5=74968d7c760617356585f38ba30749c3CAS |
[44] J. Pan, K. Xu, X. Yang, W. Y. Choy, L. Konermann, Anal. Chem. 2009, 81, 5008.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXlvVyru78%3D&md5=37fcc452c9cb23df4dc0c9809f1eb62aCAS |
[45] U. A. Mirza, S. L. Cohen, B. T. Chait, Anal. Chem. 1993, 65, 1.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK3sXjt1al&md5=9de24be38ec76e30d3f4b5c3260648d5CAS |
[46] I. A. Kaltashov, R. R. Abzalimov, J. Am. Soc. Mass Spectrom. 2008, 19, 1239.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXhtVyisb7N&md5=1b114a36f6ce7c33e42ca8c966465347CAS |
[47] I. A. Kaltashov, A. Mohimen, Anal. Chem. 2005, 77, 5370.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXls1WqsLo%3D&md5=2cbd9f46617056a61ad7376846a65757CAS |
[48] O. Nemirovskiy, R. Ramanathan, M. Gross, J. Am. Soc. Mass Spectrom. 1997, 8, 809.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2sXlt1Wmu7o%3D&md5=06860df24bd094da4ca23c4d33e7e52dCAS |
[49] P. L. Wintrode, P. L. Privalov, J. Mol. Biol. 1997, 266, 1050.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2sXitVymsL8%3D&md5=5f800713f8e9fe45f4d28e8b9b949690CAS |
[50] E. Jurneczko, P. E. Barran, Analyst (Lond.) 2011, 136, 20.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXhsFajtbrN&md5=f8d35ff56c501a1832170501872a58fdCAS |
[51] J. L. Fallon, F. A. Quiocho, Structure 2003, 11, 1303.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXnvVOmsLk%3D&md5=3a556474a24a257a48ae4574176f6f9aCAS |
[52] P. Novak, V. Havlicek, P. J. Derrick, K. A. Beran, S. Bashir, A. E. Giannakopulos, Eur. J. Mass Spectrom. (Chichester, Eng.) 2007, 13, 281.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXhtlKku7jJ&md5=fff731860aa0436795e7f37e77ddfc84CAS |
[53] T. Otosu, E. Nishimoto, S. Yamashita, J. Biochem. 2007, 142, 655.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXivFaqsrc%3D&md5=bb0248ea6959910395916697db529500CAS |
[54] D. M. Schulz, C. Ihling, G. M. Clore, A. Sinz, Biochemistry – US 2004, 43, 4703.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXisFaqs78%3D&md5=aeaea3dfd08ab28ffffb1e96312d7e83CAS |
[55] A. Scaloni, N. Miraglia, S. Orru, P. Amodeo, A. Motta, G. Marino, P. Pucci, J. Mol. Biol. 1998, 277, 945.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1cXivV2hu78%3D&md5=45026c886a76e7c9e1b893ec90cac9bfCAS |
[56] R. F. Steiner, S. Albaugh, C. Fenselau, C. Murphy, M. Vestling, Anal. Biochem. 1991, 196, 120.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK3MXks1Ors7w%3D&md5=dac603804cae9dab1e89549f9423b701CAS |
[57] S. H. Seeholzer, M. Cohn, J. A. Putkey, A. R. Means, H. L. Crespi, Proc. Natl. Acad. Sci. USA 1986, 83, 3634.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL28XksFKmtrw%3D&md5=df2b41c4843ba0ce9caa336c29645b09CAS |
[58] C. G. Caday, R. F. Steiner, Biochem. Biophys. Res. Commun. 1986, 135, 419.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL28Xhs1eqsL8%3D&md5=5c2a26913754c3e0e38af7636eaa57b4CAS |
[59] M. Kataoka, J. F. Head, B. A. Seaton, D. M. Engelman, Proc. Natl. Acad. Sci. USA 1989, 86, 6944.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL1MXlvV2rsbg%3D&md5=eb739d13dd5aaf5fe02d461bbf015538CAS |
[60] J. Gsponer, J. Christodoulou, A. Cavalli, J. M. Bui, B. Richter, C. M. Dobson, M. Vendruscolo, Structure 2008, 16, 736.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXlslGrt74%3D&md5=466214be9359d46514b6d428e2af106fCAS |
[61] J. L. Benesch, C. V. Robinson, Curr. Opin. Struct. Biol. 2006, 16, 245.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28Xjs1Grsb0%3D&md5=c38b75e23d5faae76f371343e3a9dd1aCAS |
[62] B. T. Ruotolo, K. Giles, I. Campuzano, A. M. Sandercock, R. H. Bateman, C. V. Robinson, Science 2005, 310, 1658.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXhtlSntLfE&md5=cc10ffbffb77b570b9fb9e563be54d2cCAS |
[63] C. Uetrecht, C. Versluis, N. R. Watts, W. H. Roos, G. J. Wuite, P. T. Wingfield, A. C. Steven, A. J. Heck, Proc. Natl. Acad. Sci. USA 2008, 105, 9216.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXosFakt70%3D&md5=d09d2297c2bc7dbf3ab29f362b18a4b4CAS |
[64] T. L. Pukala, B. T. Ruotolo, M. Zhou, A. Politis, R. Stefanescu, J. A. Leary, C. V. Robinson, Structure 2009, 17, 1235.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXhtFanu7jL&md5=2c99a2210b99fccfcc8b317321e64c7cCAS |