Weathered Ilmenite: Diverse Mechanisms of Sintering and Association with Contaminants*
Terry C. Parks A , Bob van Emden B C , Nathan A. S. Webster B D , Richard R. Merritt E F , Jim Graham B F and Frank J. Lincoln A GA School of Chemistry and Biochemistry, University of Western Australia, 35 Stirling Highway, Crawley, WA 6009, Australia.
B Research Centre for Advanced Mineral and Materials Processing, University of Western Australia, 35 Stirling Highway, Crawley, WA 6009, Australia.
C Present address: Central Chemical Consulting, 1/11 Narloo Street, Malaga, WA 6009, Australia.
D Present address: CSIRO Process Science and Engineering, Box 312, Clayton South, Vic. 3169, Australia.
E Iluka Resources Ltd (formerly Westralian Sands Pty Ltd), PO Box 96, Capel, WA 6271, Australia.)
F Deceased.
G Corresponding author. Email: frank.lincoln@uwa.edu.au
Australian Journal of Chemistry 65(7) 892-904 https://doi.org/10.1071/CH12032
Submitted: 19 January 2012 Accepted: 22 March 2012 Published: 5 June 2012
Abstract
We briefly review the nature and provenance of extremely weathered ilmenite, then investigate its fate when it is 10 % of a blended feed in the reduction kilns of the Becher process. There it is bound, unintentionally and intermittently, in sinter, which is discarded. It takes with it discrete aluminosilicate grains as well as contaminants, adsorbed and occluded within the ilmenite. Two distinct sintering mechanisms are identified. A layered wall accretion forms purely by solid state reaction, and is thickest early in the kiln. It occasionally detaches under its own weight or is eroded, and is tolerated between scheduled shutdowns for maintenance. However, if the weathered ilmenite and accompanying silica escape earlier wall accretion, a transitory aluminosilicate melt may later promote sintering of this material within the bed, adhering catastrophically to constrictions and obstructions on the kiln wall. The mechanisms and controlling factors are discussed.
References
[1] M. S. Shepherd, in The Geology of the Mineral Deposits of Australia and New Guinea (Ed. F. E. Hughes) 1990, pp. 1591–1594 (Australasian Institute of Mining and Metallurgy: Melbourne).[2] B. K. Masters, in The Geology of the Mineral Deposits of Australia and New Guinea (Ed. F. E. Hughes) 1990, pp. 1595–1597 (Australasian Institute of Mining and Metallurgy: Melbourne).
[3] N. T. M. Hamilton, Int. Geol. Rev. 1995, 37, 755.
| Crossref | GoogleScholarGoogle Scholar |
[4] R. Palmer, in PyroSem WA, a Seminar on Pyrometallurgical Operations in WA (Eds E. J. Grimsey, N. D. Stockton) 1990, pp. 67–106 (Murdoch University Press: Perth).
[5] A. Chatterjee, Beyond the Blast Furnace 1993, (CRC Press: Boca Raton).
[6] G. Eriksson, A. D. Pelton, E. Woerman, A. Ender, Ber. Bunsenges. Phys. Chem 1996, 100, 1839.
| 1:CAS:528:DyaK28Xntlalu7w%3D&md5=68cb9f21e810c1b42a709107f7e5efc6CAS |
[7] B. G. Hyde, S. Andersson, Inorganic Crystal Structures 1989 (John Wiley and Sons: New York).
[8] R. R. Anand, R. J. Gilkes, Clays Clay Miner. 1984, 32, 363.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL2cXmtlegsb8%3D&md5=f84dc870468a0e30bb32a77fd21fc868CAS |
[9] R. R. Anand, R. J. Gilkes, Mineral. Mag. 1985, 49, 141.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL2MXhtFKksLk%3D&md5=b9159b902d6c1f7a585babc2cdda3427CAS |
[10] I. R. Williams, South Western Province, in The Geology of Western Australia: Western Australia Geological Survey, Memoir 2, 1975, pp. 65–70. (Western Australia Geological Survey: Perth).
[11] P. E. Playford, R. N. Cope, A. E. Cockbain, G. H. Low, D. C. Lowry, Perth Basin in The Geology of Western Australia: Western Australia Geological Survey, Memoir 2, 1975, pp. 227–268. (Western Australia Geological Survey: Perth).
[12] L. Khor, T. Parks, F. J. Lincoln, J. Graham, Aust. J. Chem. 1996, 49, 847.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK28Xms1amtL8%3D&md5=c5bf7fd21f1e6a48c1bd7382b1a675ebCAS |
[13] A. Mucke, J. N. B. Chaudhuri, Ore Geol. Rev. 1991, 6, 25.
| Crossref | GoogleScholarGoogle Scholar |
[14] M. S. Walker, A. L. Devernoe, Int. J. Miner. Process. 1991, 31, 195.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK3MXkslGku7w%3D&md5=cd679dc73be424ca609f7097db6670fcCAS |
[15] L. Khor, The Nature and Control of Contaminants in Altered Ilmenites 1997, Ph.D. thesis, Department of Chemistry, University of Western Australia, Crawley.
[16] A. F. White, M. L. Peterson, M. F. Hochella, Geochim. Cosmochim. Acta 1994, 58, 1859.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2cXjtVent7o%3D&md5=ffb5db3d221a0b0a4dead42e9fbc101eCAS |
[17] A. F. M. Barton, S. R. McConnel, J. Chem. Soc., Faraday Trans. 1978, 75, 971.
[18] T. C. Parks, Characterization of High Thoria Contents in Eneabba Ilmenites, Report MPC/F-006 1990, (CSIRO Division of Mineral Products, Perth).
[19] I. E. Grey, C. Li, J. A. Watts, Am. Mineral. 1983, 68, 981.
| 1:CAS:528:DyaL3sXlsVegs78%3D&md5=8b651e8d15c53b88b5aa400e2fc4632dCAS |
[20] I. E. Grey, C. Li, Mineral. Mag. 2003, 67, 733.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXntlaksLk%3D&md5=d8166fc238c53c395420632b2ef086c5CAS |
[21] B. A. O’Brien, in Heavy Minerals 1997 1997, p. 61 (South African Institute of Mining and Metallurgy: Johannesburg).
[22] R. T. Bui, G. Simard, A. Charette, Y. Kocaefe, J. Perron, Can. J. Chem. Eng. 1995, 73, 534.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2MXnsVyntLk%3D&md5=b4b76566487ce673bab4d1568fc72a67CAS |
[23] N. A. S. Webster, An examination of the sintering accretions formed in an ilmenite reduction kiln 2000, Honours thesis, Department of Chemistry, University of Western Australia, Perth.
[24] G. Müller, J. Geophys. Res. 1998, 103B, 15239.
| Crossref | GoogleScholarGoogle Scholar |
[25] E. M. Levin, C. R. Robbins, H. F. McMurdie, Eds. Phase Diagrams for Ceramists 1964 (The American Ceramic Society Inc.: Columbus, OH).
[26] M. Xu, D. Yu, H. Yao, X. Liu, Y. Qiao, Proc. Combust. Inst. 2011, 33, 1681.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXptFGgsL0%3D&md5=2852a99da9ce51ec8114e779d6607ba3CAS |
[27] J. F. Banfield, B. L. Bischoff, M. A. Anderson, Chem. Geol. 1993, 110, 211.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2cXotFOhtA%3D%3D&md5=c1524bf407b7d083891e04e2c83e04e8CAS |
[28] C. P. Pistorious, T. Motlhamme, Miner. Eng. 2006, 19, 232.
| Crossref | GoogleScholarGoogle Scholar |
[29] I. E. Grey, C. Li, The AusIMM Proceedings 2001, 306, 35.
| 1:CAS:528:DC%2BD3sXnvVSmsLY%3D&md5=82bfe1b1aa46714ebce1d1d447b37382CAS |
[30] A. Rindby, K. Janssens, J. Osan, XRay Spectrom. 2003, 32, 248.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXkvFCrsrk%3D&md5=70aa7a4628c54c6714a42f5d546b93d6CAS |
[31] M. A. Mosesman, K. S. Pitzer, J. Am. Chem. Soc. 1941, 63, 2348.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaH3MXkslSlsw%3D%3D&md5=67946509fbf7951a239ca9a68f13b5d6CAS |
[32] A. G. Turnbull, M. W. Wadsley, The CSIRO Thermochemistry System, version 5.1 1991, (CSIRO Division of Mineral Products: Melbourne).
[33] A. Chatterjee, P. D. Pandey, Ironmak. Steelmak. 1981, 8, 250.
| 1:CAS:528:DyaL38XhsVKksL8%3D&md5=e308d38070954d869a56544a79170143CAS |
[34] J. S. Wells, Compiler, in Industrial Research News 1970, 79, (CSIRO, Melbourne).
[35] G. Zhang, O. Ostrovski, Int. J. Miner. Process. 2002, 64, 201.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38XisV2gt78%3D&md5=b1d25f93f89fc73b4899b674bda9347bCAS |