Coarse-Grained Simulations of the Effects of Chain Length, Solvent Quality, and Chemical Defects on the Solution-Phase Morphology of MEH-PPV Conjugated Polymers
Ming Chiu A , Tak W. Kee A and David M. Huang A BA School of Chemistry & Physics, The University of Adelaide, SA 5005, Australia.
B Corresponding author. Email: david.huang@adelaide.edu.au
Australian Journal of Chemistry 65(5) 463-471 https://doi.org/10.1071/CH12029
Submitted: 19 January 2012 Accepted: 1 February 2012 Published: 14 March 2012
Abstract
A mesoscale coarse-grained model of the conjugated polymer poly(2-methoxy-5-(2′-ethylhexyloxy)-1,4-phenylenevinylene) (MEH-PPV) in implicit solvent is developed. The model is parametrized to reproduce the local structure and dynamics of an atomistic simulation model and accounts for the effects of solvent quality and saturation chemical defects on the polymer structure. Polymers with defect concentrations of 0 to 10 % are simulated using Langevin dynamics in tetrahydrofuran (THF) and in a model poor solvent for chain lengths and solution concentrations used experimentally. The polymer chains are extended in THF and collapse into compact structures in the poor solvent. The radius of gyration decreases with defect content in THF and agrees quantitatively with experiment. The structures formed in poor solvent by chains with 300 monomer units change from toroidal to cylindrical with increasing defect content, while chains containing 1000 monomers form cylinders regardless of defect content. These results have implications for energy transfer in MEH-PPV.
References
[1] J. H. Burroughes, D. D. C. Bradley, A. R. Brown, R. N. Marks, K. Mackay, R. H. Friend, P. L. Burns, A. B. Holmes, Nature 1990, 347, 539.| 1:CAS:528:DyaK3cXmt1Sru7o%3D&md5=034e9f958875d2f9b059ce867744008fCAS |
[2] H. Sirringhaus, N. Tessler, R. H. Friend, Science 1998, 280, 1741.
| 1:CAS:528:DyaK1cXjslOhurY%3D&md5=a0ae67496a142d8643e8791df7f3c132CAS |
[3] J. J. M. Halls, C. A. Walsh, N. C. Greenham, E. A. Marseglia, R. H. Friend, S. C. Moratti, A. B. Holmes, Nature 1995, 376, 498.
| 1:CAS:528:DyaK2MXnsVCrs7c%3D&md5=e2a19226660784d1a00738f8a135f0aaCAS |
[4] C. Wu, C. Szymanski, J. McNeill, Langmuir 2006, 22, 2956.
| 1:CAS:528:DC%2BD28Xhslers7k%3D&md5=6dc7c1191b30ece53e42f5cbdebd7af5CAS |
[5] R. H. Friend, R. W. Gymer, A. B. Holmes, J. H. Burroughes, R. N. Marks, C. Taliani, D. D. C. Bradley, D. A. D. Santos, J. L. Bredas, M. Logdlund, W. R. Salaneck, Nature 1999, 397, 121.
| 1:CAS:528:DyaK1MXntVOhsA%3D%3D&md5=57736c7ff09512e13e1d6074709dcdbdCAS |
[6] G. Padmanaban, S. Ramakrishnan, J. Am. Chem. Soc. 2000, 122, 2244.
| 1:CAS:528:DC%2BD3cXht1aiu7s%3D&md5=2453ce527e4e68b83113928963a25bc4CAS |
[7] B. J. Schwartz, Annu. Rev. Phys. Chem. 2003, 54, 141.
| 1:CAS:528:DC%2BD3sXntFSgs7g%3D&md5=57eed82493b757113ea69b0c2ce0a4d6CAS |
[8] D. Hu, J. Yu, K. Wong, B. Bagchi, P. J. Rossky, P. F. Barbara, Nature 2000, 405, 1030.
| 1:CAS:528:DC%2BD3cXkvFKlsrc%3D&md5=a1db86c67dc22db10c05ccee88e71162CAS |
[9] C. J. Brabec, M. Heeney, I. McCulloch, J. Nelson, Chem. Soc. Rev. 2011, 40, 1185.
| 1:CAS:528:DC%2BC3MXit1Kisb0%3D&md5=84c66593ddca24daf7d03b45ebe8d2e3CAS |
[10] S. N. Clafton, D. A. Beattie, A. Mierczynska-Vasilev, R. G. Acres, A. C. Morgan, T. W. Kee, Langmuir 2010, 26, 17785.
| 1:CAS:528:DC%2BC3cXhsVSisbzL&md5=6257494c81c6bdec7638b68afb3080b2CAS |
[11] A. Kohler, D. A. dos Santos, D. Beljonne, Z. Shuai, J. L. Bredas, A. B. Holmes, A. Kraus, K. Mullen, R. H. Friend, Nature 1998, 392, 903.
| 1:CAS:528:DyaK1cXjtVyqu7o%3D&md5=91b1bf3a2b176888e7a1119827e4be24CAS |
[12] C. De Leener, E. Hennebicq, J.-C. Sancho-Garcia, D. Beljonne, J. Phys. Chem. B 2009, 113, 1311.
| 1:CAS:528:DC%2BD1MXls1ehtw%3D%3D&md5=dbba0f9c222989217ea340fe5407ddd1CAS |
[13] C. Gettinger, A. J. Heeger, J. Drake, D. Pine, J. Chem. Phys. 1994, 101, 1673.
| 1:CAS:528:DyaK2cXltlGhs78%3D&md5=6bfa2b6d5abe781a0b00b3da4f9b59dbCAS |
[14] K. F. Wong, M. S. Skaf, C.-Y. Yang, P. J. Rossky, B. Bagchi, D. Hu, J. Yu, P. F. Barbara, J. Phys. Chem. B 2001, 105, 6103.
| 1:CAS:528:DC%2BD3MXjvFequ7s%3D&md5=5e1abefd285d50cdebc30738b915822bCAS |
[15] T.-Q. Nguyen, V. Doan, B. J. Schwartz, J. Chem. Phys. 1999, 110, 4068.
| 1:CAS:528:DyaK1MXosVajsA%3D%3D&md5=c41bbd67b614521dd1241b46e84ae3b5CAS |
[16] J. Vogelsang, J. Brazard, T. Adachi, J. C. Bolinger, P. F. Barbara, Angew. Chem. Int. Ed. 2011, 50, 2257.
| 1:CAS:528:DC%2BC3MXisVKltrc%3D&md5=91c4b497b5274ee1ded553571f857453CAS |
[17] H. Becker, H. Spreitzer, K. Ibrom, W. Kreuder, Macromolecules 1999, 32, 4925.
| 1:CAS:528:DyaK1MXkt1aqsrc%3D&md5=bfca4adef597557219639e8d4e37c5e5CAS |
[18] A. R. Inigo, H.-C. Chiu, W. Fann, Y.-S. Huang, U. S. Jeng, C. H. Hsu, K.-Y. Peng, S.-A. Chen, Synth. Met. 2003, 139, 581.
| 1:CAS:528:DC%2BD3sXmvVKrurc%3D&md5=f09834f8470af30b3928a58f0cba1b40CAS |
[19] P. K. Choudhury, D. Bagchi, C. S. S. Sangeeth, R. Menon, J. Mater. Chem. 2011, 21, 1607.
| 1:CAS:528:DC%2BC3MXmsFagtQ%3D%3D&md5=8fbed35aa0597cf00f726c01f763b659CAS |
[20] P. Kumar, A. Mehta, S. M. Mahurin, S. Dai, M. D. Dadmun, B. G. Sumpter, M. D. Barnes, Macromolecules 2004, 37, 6132.
| 1:CAS:528:DC%2BD2cXls1KktLc%3D&md5=576bd329227339f6cf62c886ce0848f7CAS |
[21] S. Habuchi, S. Onda, M. Vacha, Phys. Chem. Chem. Phys. 2011, 13, 1743.
| 1:CAS:528:DC%2BC3MXnsV2nuw%3D%3D&md5=48fe5cae95836af9724c07b859d8106aCAS |
[22] G. Bounos, S. Ghosh, A. K. Lee, K. N. Plunkett, K. H. DuBay, J. C. Bolinger, R. Zhang, R. A. Friesner, C. Nuckolls, D. R. Reichman, P. F. Barbara, J. Am. Chem. Soc. 2011, 133, 10155.
| 1:CAS:528:DC%2BC3MXnsF2gtL8%3D&md5=b7c4c6b58c05b11b89c3465c91842e64CAS |
[23] Y. Ebihara, M. Vacha, J. Phys. Chem. B 2008, 112, 12575.
| 1:CAS:528:DC%2BD1cXhtFWks7fF&md5=b16bf7668c31add195219c1679b857e5CAS |
[24] T. Adachi, J. Brazard, P. Chokshi, J. C. Bolinger, V. Ganesan, P. F. Barbara, J. Phys. Chem. C 2010, 114, 20896.
| 1:CAS:528:DC%2BC3cXht12jtbbP&md5=b2c85cb4d588ae5320f82505bfd76f12CAS |
[25] B. G. Sumpter, P. Kumar, A. Mehta, M. D. Barnes, W. A. Shelton, R. J. Harrison, J. Phys. Chem. B 2005, 109, 7671.
| 1:CAS:528:DC%2BD2MXis1entr0%3D&md5=2bd61be6b23a67be8a16f0f5a40b04faCAS |
[26] D. Reith, M. Pütz, F. Müller-Plathe, J. Comput. Chem. 2003, 24, 1624.
| 1:CAS:528:DC%2BD3sXntFentL4%3D&md5=71dd79f91d3b382adb965870737936caCAS |
[27] S. Izvekov, G. A. Voth, J. Chem. Phys. 2005, 123, 134105.
[28] C. K. Lee, C. C. Hua, S. A. Chen, J. Phys. Chem. B 2008, 112, 11479.
| 1:CAS:528:DC%2BD1cXhtVaru7jI&md5=09113c5627b0df84e7a889cf18653f1eCAS |
[29] C. K. Lee, C. C. Hua, S. A. Chen, Macromolecules 2011, 44, 320.
[30] W. L. Jorgensen, D. S. Maxwell, J. Tirado-Rives, J. Am. Chem. Soc. 1996, 118, 11225.
| 1:CAS:528:DyaK28XmtlOitrs%3D&md5=80c3e572a4bb5c5e9a97ceebb54208d1CAS |
[31] G. A. Kaminski, R. A. Friesner, J. Tirado-Rives, W. L. Jorgensen, J. Phys. Chem. B 2001, 105, 6474.
| 1:CAS:528:DC%2BD3MXislKhsLk%3D&md5=828ecf79779d005a54828fbc10170e97CAS |
[32] M. L. P. Price, D. Ostrovsky, W. L. Jorgensen, J. Comput. Chem. 2001, 22, 1340.
| 1:CAS:528:DC%2BD3MXms1Sktrs%3D&md5=8fe9af9e378a5ccbf873a85cd45d521dCAS |
[33] V. Marcon, G. Raos, J. Am. Chem. Soc. 2006, 128, 1408.
| 1:CAS:528:DC%2BD28XjvV2rsA%3D%3D&md5=dc2dd32d34a12788bcfbd66518484415CAS |
[34] Plimpton S. J., J. Comput. Phys. 1995, 117, 1, lammps Molecular Dynamics Simulator: http://lammps.sandia.gov.
[35] W. G. Hoover, Phys. Rev. A 1985, 31, 1695.
[36] W. G. Hoover, Phys. Rev. A 1986, 34, 2499.
[37] Hockney R. W., Eastwood J. W., Computer Simulation Using Particles 1988 (Taylor & Francis: Bristol).
[38] S. Grimm, D. Tabatabai, A. Scherer, J. Michaelis, I. Frank, J. Phys. Chem. B 2007, 111, 12053.
| 1:CAS:528:DC%2BD2sXhtFSqs77E&md5=94518e7b785d1dfcd66440f271b750f2CAS |
[39] S. B. Darling, M. Sternberg, J. Phys. Chem. B 2009, 113, 6215.
| 1:CAS:528:DC%2BD1MXjtFyku7k%3D&md5=cd79ffe057b6fd5c655d293abe90f240CAS |
[40] J. C. Sancho-Garca, A. Karpfen, Chem. Phys. Lett. 2005, 411, 321.
[41] D. M. Huang, R. Faller, K. Do, A. J. Moulé, J. Chem. Theory Comput. 2010, 6, 526.
| 1:CAS:528:DC%2BD1MXhs1aksrnI&md5=13101799cd05ad7d56953647193928aaCAS |
[42] Allen M. P., Tildesley D. J., Computer Simulation of Liquids 1987 (Clarendon: Oxford).
[43] J. R. Spaeth, I. G. Kevrekidis, A. Z. Panagiotopoulos, J. Chem. Phys. 2011, 134, 164902.
[44] J. Rotne, S. Prager, J. Chem. Phys. 1969, 50, 4831.
| 1:CAS:528:DyaF1MXktl2mtLk%3D&md5=b4ef13ac28d7c77120cf94ac9041f30cCAS |
[45] H. Yamakawa, J. Chem. Phys. 1970, 53, 436.
| 1:CAS:528:DyaE3cXksVGqt7s%3D&md5=98befbaf9d2d81e7a4a969b75989271dCAS |
[46] S. L. Mayo, B. D. Olafson, W. A. Goddard, J. Phys. Chem. 1990, 94, 8897.
| 1:CAS:528:DyaK3cXmtlyhtL0%3D&md5=b3b92bdbf6fe501ebb4090bb657c1c55CAS |
[47] Rubinstein M., Colby R. H., Polymer Physics 2003 (Oxford University Press: Oxford).
[48] M. M. L. Grage, P. W. Wood, A. Ruseckas, T. Pullerits, W. Mitchell, P. L. Burn, I. D. W. Samuel, V. Sundstrom, J. Chem. Phys. 2003, 118, 7644.
| 1:CAS:528:DC%2BD3sXivFaksL8%3D&md5=8acdf6c8bf87d6e55f1216bc50d6182eCAS |
[49] S. Westenhoff, C. Daniel, R. H. Friend, C. Silva, V. Sundstrom, A. Yartsev, J. Chem. Phys. 2005, 122, 094903.