A New and Efficient Procedure for Friedländer Synthesis of Quinolines in Low Melting Tartaric Acid-Urea Mixtures
Fei-Ping Ma A , Gui-Tian Cheng B , Zhi-Guo He C and Zhan-Hui Zhang A DA College of Chemistry and Material Science, Hebei Normal University, Shijiazhuang 050024, P. R. China.
B Hebei Chemical and Pharmaceutical Vocational Technology College, Shijiazhuang 050026, P. R. China.
C College of Resources and Environment, Hebei Normal University, Shijiazhuang 050024, P. R. China.
D Corresponding author. Email: zhanhui@126.com
Australian Journal of Chemistry 65(4) 409-416 https://doi.org/10.1071/CH12025
Submitted: 19 January 2012 Accepted: 24 February 2012 Published: 27 March 2012
Abstract
A general, efficient and green method for the synthesis of quinoline derivatives via the Friedländer heteroannulation reaction of 2-aminoaryl ketones and α-methylene ketones has been developed, employing low melting mixtures of L-(+)-tartaric acid and urea derivatives as an inexpensive, non-toxic, easily biodegradable reaction medium. The melt acts as both the reaction medium and catalyst, furnishing quinolines in high to excellent yields.
References
[1] C. H. Tseng, C. C. Tzeng, K. Y. Chung, C. L. Kao, C. Y. Hsu, C. M. Cheng, K. S. Huang, Y. L. Chen, Bioorg. Med. Chem. 2011, 19, 7653.| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXhsFegsrfF&md5=b00508ca9c6ed5798123abc48f14e954CAS |
[2] C. Praveen, P DheenKumar, D Muralidharan, P. T. Perumal, Bioorg. Med. Chem. Lett. 2010, 20, 7292.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXhsVKjtb7J&md5=3fd5ccac32b5b9ec3c640c28e6530f6cCAS |
[3] K. Balamurugan, V. Jeyachandran, S. Perumal, T. H. Manjashetty, P. Yogeeswari, D. Sriram, Eur. J. Med. Chem. 2010, 45, 682.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXos1Sguw%3D%3D&md5=2e96b6d2d86d904d07ff8b88a7eb210aCAS |
[4] K. Kaur, M. Jain, R. P. Reddy, R. Jain, Eur. J. Med. Chem. 2010, 45, 3245.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXnsVSqur0%3D&md5=682e09c54655df81cf57995037cd431bCAS |
[5] A. Carta, I. Briguglio, S. Piras, P. Corona, G. Boatto, M. Nieddu, P. Giunchedi, M. E. Marongiu, G. Giliberti, F. Iuliano, S. Blois, C. Ibba, B. Busonera, P. La Colla, Bioorg. Med. Chem. 2011, 19, 7070.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXhsVehsr7L&md5=43b7945d0ce9bd5448bd91662d28e388CAS |
[6] M. M. Ghorab, F. A. Ragab, H. I. Heiba, W. M. Ghorab, J. Heterocycl. Chem. 2011, 48, 1269.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXhsFSlu7zE&md5=ac3f43c38c4e34c39bd74e98ae28b9acCAS |
[7] H. N. Chopde, R. Pagadala, J. S. Meshram, V. Jetti, J. Heterocycl. Chem. 2011, 48, 1323.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXhsFSlu7rN&md5=98622e41ddf8ddf7bb5226fe6f5ef18cCAS |
[8] S. Jaroch, M. Berger, C. Huwe, K. Krolikiewicz, H. Rehwinkel, H. Schacke, N. Schmees, W. Skuballa, Bioorg. Med. Chem. Lett. 2010, 20, 5835.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXhtFGnt7%2FF&md5=117aed4f44fcaf319484623151de2c0aCAS |
[9] S. Madapa, Z. Tusi, S. Batra, Curr. Org. Chem. 2008, 12, 1116.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXhtFeju7%2FP&md5=a6c75f0936103db437e6c81eb04f0cb5CAS |
[10] (a) S. Rousseaux, B. Liegault, K. Fagnou, Chem. Sci. 2012, 3, 244.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXhsFeisr7L&md5=d790d076ec4cfdaba6d905735754316bCAS |
(b) J. Panteleev, R. Y. Huang, E. K. J. Lui, M. Lautens, Org. Lett. 2011, 13, 5314.
| Crossref | GoogleScholarGoogle Scholar |
(c) Y. X. Wang, Q. Liao, P. Zhao, C. J. Xi, Adv. Synth. Catal. 2011, 353, 2659.
| Crossref | GoogleScholarGoogle Scholar |
(d) S. S. Patil, S. V. Patil, V. D. Bobade, Synlett 2011, 2379.
(e) B. Das, P. Jangili, J. Kashanna, R. A. Kumar, Synthesis 2011, 3267.
| Crossref | GoogleScholarGoogle Scholar |
(f) L. He, J. Q. Wang, Y. Gong, Y. M. Liu, Y. Cao, H. Y. He, K. N. Fan, Angew. Chem. Int. Edit. 2011, 50, 10216.
| Crossref | GoogleScholarGoogle Scholar |
(g) C. L. Peng, Y. Wang, L. Y. Liu, H. G. Wang, J. J. Zhao, Q. Zhu, Eur. J. Org. Chem. 2010, 818.
| Crossref | GoogleScholarGoogle Scholar |
(h) R. Sarma, D. Prajapati, Synlett 2008, 3001.
(i) H. F. Li, C. Y. Wang, H. Huang, X. L. Xu, Y. Z. Li, Tetrahedron Lett. 2011, 52, 1108.
| Crossref | GoogleScholarGoogle Scholar |
(j) H. F. Li, X. L. Xu, J. Y. Yang, X. Xie, H. Huang, Y. Z. Li, Tetrahedron Lett. 2011, 52, 530.
| Crossref | GoogleScholarGoogle Scholar |
[11] (a) J. Marco-Contelles, E. Perez-Mayoral, A. Samadi, M. D. Carreiras, E. Soriano, Chem. Rev. 2009, 109, 2652.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXksVSltrY%3D&md5=f858a3e92addafef9e061ea55d9e7d68CAS |
(b) Y. H. Long, L. H. Liang, D. Q. Yang, Chinese J. Org. Chem. 2009, 29, 1.
(c) L. H. Wu, D. Q. Yang, Chinese J. Org. Chem. 2010, 30, 1180.
[12] M. Hosseini-Sarvari, Can. J. Chem. 2009, 87, 1122.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXhtVaqt7%2FK&md5=049ca177496a02086ad3a3a78abe718cCAS |
[13] E. Perez-Mayoral, J. Cejka, ChemCatChem 2011, 3, 157.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXit1yiuw%3D%3D&md5=02425cfd31ef64445537b1e8c0f0d6b3CAS |
[14] E. Soleimani, M. M. Khodaei, N. Batooie, S. Samadi, Chem. Pharm. Bull. (Tokyo) 2010, 58, 212.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXos1Ohs7c%3D&md5=48ebe89d51fbd87d255b210e9ad01ab1CAS |
[15] H. S. Wang, J. N. Zeng, Chinese J. Org. Chem. 2010, 30, 1072.
[16] B. Jiang, J. J. Dong, Y. Jin, X. L. Du, M. Xu, Eur. J. Org. Chem. 2008, 2693.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXnsV2gtrw%3D&md5=f05d625393734bfd6e60299e0fc1c004CAS |
[17] A. Hasaninejad, A. Zare, M. Shekouhy, J. Ameri-Rad, Green Chem. 2011, 13, 958.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXkt1Khsbs%3D&md5=81edb7c153b93e277a39ff394a838438CAS |
[18] J. Akbari, A. Heydari, H. R. Kalhor, S. A. Kohan, J. Comb. Chem. 2010, 12, 137.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXhtlChurzI&md5=3d861eb87b051a87659a807d5d11a81dCAS |
[19] (a) D. S. Bose, M. Idrees, N. M. Jakka, J. V. Rao, J. Comb. Chem. 2010, 12, 100.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXhsFCltrrO&md5=9e6cb56be9b335eab7c65394181fb2cdCAS |
(b) V. Sridharan, P. Ribelles, M. T. Ramos, J. C. Menendez, J. Org. Chem. 2009, 74, 5715.
| Crossref | GoogleScholarGoogle Scholar |
[20] S. Chauhan, R. Chakravarti, S. M. J. Zaidi, S. S. Al-Deyab, B. V. S. Reddy, A. Vinu, Synlett 2010, 2597.
| 1:CAS:528:DC%2BC3cXhsVCisbvI&md5=9ed8f71b1479f40263ca225aa3bf5be2CAS |
[21] P. P. Reddy, B. C. Raju, J. M. Rao, J. Chem. Res. 2008, 679.
| 1:CAS:528:DC%2BD1MXhtVKlurY%3D&md5=95684090a90430cb9b91ba9ad5cc5de8CAS |
[22] M. Dabiri, S. C. Azimi, A. Bazgir, Monatsh. Chem. 2007, 138, 659.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXmsFWqtLg%3D&md5=8743ce39c9f3bbba52d174f74cdc3842CAS |
[23] H. Tajik, K. Niknam, M. Sarrafan, Synth. Commun. 2011, 41, 2103.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXmtl2ltLk%3D&md5=e4941cc2e40bff8696c753e83a10141eCAS |
[24] J. K. Augustine, A. Bombrun, S. Venkatachaliah, Tetrahedron Lett. 2011, 52, 6814.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXhsVOjtL7M&md5=d98ab40b90918409280ba539b6df6963CAS |
[25] M. Barber, S. Bazzi, S. Cadamuro, S. Dughera, Tetrahedron Lett. 2010, 51, 2342.
[26] S. Genovese, F. Epifano, M. C. Marcotullio, C. Pelucchini, M. Curini, Tetrahedron Lett. 2011, 52, 3474.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXntFGlt70%3D&md5=d899ecabf5484c1caa1ae84349e2dcc2CAS |
[27] N. P. Selvam, C. Saravanan, D. Muralidharan, P. T. Perumal, J. Heterocycl. Chem. 2006, 43, 1379.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XhtFKks7bI&md5=e35058c6cbad92c1ebc80abf35e82636CAS |
[28] R. Varala, R. Enugala, S. R. Adapa, Synthesis 2006, 3825.
| 1:CAS:528:DC%2BD28XhtlWqsL7L&md5=5776deb3386f4c7baffaf50e653d96f8CAS |
[29] (a) R. N. Butler, A. G. Coyne, Chem. Rev. 2010, 110, 6302.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXhtFWlsLvM&md5=eea9a416308fb7d65d6f230fee03a593CAS |
(b) X. Fan, Y. He, S. Guo, X. Zhang, Aust. J. Chem. 2011, 64, 1568.
| Crossref | GoogleScholarGoogle Scholar |
[30] J. Wang, T. L. Greaves, D. F. Kennedy, A. Weerawardena, G. Song, C. J. Drummond, Aust. J. Chem. 2011, 64, 180.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXhvFWhsrk%3D&md5=dd59efab852521d8f110ec84e0bc099fCAS |
[31] T. Adschiri, Y. W. Lee, M. Goto, S. Takami, Green Chem. 2011, 13, 1380.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXntV2murg%3D&md5=d7a90e72b33770321f58e4279f0f47dfCAS |
[32] (a) J. Lu, Z. Z. Guan, J. W. Gao, Z. H. Zhang, Appl. Organomet. Chem. 2011, 25, 537.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXotVCmsrk%3D&md5=5cae1d030febf673a307059f293c8ad0CAS |
(b) X. N. Zhang, Y. X. Li, Z. H. Zhang, Tetrahedron 2011, 67, 7426.
| Crossref | GoogleScholarGoogle Scholar |
[33] (a) M. Delample, N. Villandier, J. P. Douliez, S. Camy, J. S. Condoret, Y. Pouilloux, J. Barrault, F. Jerome, Green Chem. 2010, 12, 804.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXlvVGhs7o%3D&md5=fab52879681ee389d19508c758ffc856CAS |
(b) Y. L. Gu, F. Jerome, Green Chem. 2010, 12, 1127.
| Crossref | GoogleScholarGoogle Scholar |
[34] (a) H. Schwertfeger, Synlett 2010, 2971.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXltFSi&md5=354c01a7c3bf8157e7dc0d289c65c953CAS |
(b) M. Tajbakhsh, R. Hosseinzadeh, H. Alinezhad, S. Ghahari, A. Heydari, S. Khaksar, Synthesis 2011, 490.
| Crossref | GoogleScholarGoogle Scholar |
[35] G. Imperato, S. Hoger, D. Lenoir, B. Konig, Green Chem. 2006, 8, 1051.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28Xht1Clsr%2FF&md5=51fac340fab6e309ba05fb47b37d9811CAS |
[36] G. Imperato, R. Vasold, B. Konig, Adv. Synth. Catal. 2006, 348, 2243.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XhtFygu73J&md5=9e8f07d1be386c40649f9e05a88f30bdCAS |
[37] G. Imperato, E. Eibler, J. Niedermaier, B. Konig, Chem. Commun. 2005, 1170.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXhs1Cqu7c%3D&md5=1a4f0898cc14450316a4c8757de9a989CAS |
[38] F. Ilgen, B. Konig, Green Chem. 2009, 11, 848.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXmvV2qtrY%3D&md5=eecfd72f415a13b2e92598fd47e06e1fCAS |
[39] F. Ilgen, D. Ott, D. Kralisch, C. Reil, A. Palmberger, B. Konig, Green Chem. 2009, 11, 1948.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXhsFShu7vP&md5=177a8e43d2853ee0de96bf648820c152CAS |
[40] C. Russ, F. Ilgen, C. Reil, C. Luff, A. H. Begli, B. Konig, Green Chem. 2011, 13, 156.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXjs1KhtA%3D%3D&md5=0b485fa444cb6b437afea4ec38bb7a4eCAS |
[41] S. Gore, S. Baskaran, B. Koenig, Green Chem. 2011, 13, 1009.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXkt1Khsbg%3D&md5=8ad9333127a052d2ff49e1bb163d4550CAS |
[42] (a) Z. H. Zhang, X. Y. Tao, Aust. J. Chem. 2008, 61, 77.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXhslemsrY%3D&md5=2c4485ff61b9a96528571e487b79ecb8CAS |
(b) Z. H. Zhang, J. J. Li, T. S. Li, Ultrason. Sonochem. 2008, 15, 673.
| Crossref | GoogleScholarGoogle Scholar |
(c) Y. H. Liu, Z. H. Zhang, T. S. Li, Synthesis 2008, 3314.
| Crossref | GoogleScholarGoogle Scholar |
(d) Y. H. Liu, Q. S. Liu, Z. H. Zhang, Tetrahedron Lett. 2009, 50, 916.
| Crossref | GoogleScholarGoogle Scholar |
(e) H. Y. Lü, S. H. Yang, J. Deng, Z. H. Zhang, Aust. J. Chem. 2010, 63, 1290.
| Crossref | GoogleScholarGoogle Scholar |
(f) Z. H. Zhang, H. Y. Lu, S. H. Yang, J. W. Gao, J. Comb. Chem. 2010, 12, 643.
| Crossref | GoogleScholarGoogle Scholar |
(g) H. J. Wang, L. P. Mo, Z. H. Zhang, ACS Comb. Sci. 2011, 13, 181.
| Crossref | GoogleScholarGoogle Scholar |
(h) J. Deng, L. P. Mo, F. Y. Zhao, L. L. Hou, L. Yang, Z. H. Zhang, Green Chem. 2011, 13, 2576.
| Crossref | GoogleScholarGoogle Scholar |
[43] W. Treibs, G. Fischer, H. Lichtman, W. Schroth, Justus Liebigs Ann. Chem. 1961, 642, 97.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaF3MXhsVCitr4%3D&md5=9aa3075142f39afaaaeebb8fe7ca8716CAS |