Register      Login
Australian Journal of Chemistry Australian Journal of Chemistry Society
An international journal for chemical science
RESEARCH FRONT (Open Access)

Structure, Dynamics, and Function in the Major Light-Harvesting Complex of Photosystem II

Gabriela S. Schlau-Cohen A B C and Graham R. Fleming A B D
+ Author Affiliations
- Author Affiliations

A Department of Chemistry, University of California, Berkeley, CA 94720, USA.

B Physical Biosciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA.

C Current address: Department of Chemistry, Stanford University, Stanford, CA 94305, USA.

D Corresponding author. Email: grfleming@lbl.gov

Australian Journal of Chemistry 65(6) 583-590 https://doi.org/10.1071/CH12022
Submitted: 18 January 2012  Accepted: 7 March 2012   Published: 3 May 2012

Abstract

In natural light-harvesting systems, pigment-protein complexes (PPC) convert sunlight to chemical energy with near unity quantum efficiency. PPCs exhibit emergent properties that cannot be simply extrapolated from knowledge of their component parts. In this Perspective, we examine the design principles of PPCs, focussing on the major light-harvesting complex of Photosystem II (LHCII), the most abundant PPC in green plants. Studies using two-dimensional electronic spectroscopy (2DES) provide an incisive tool to probe the electronic, energetic, and spatial landscapes that enable the efficiency observed in photosynthetic light-harvesting. Using the information about energy transfer pathways, quantum effects, and excited state geometry contained within 2D spectra, the excited state properties can be linked back to the molecular structure. This understanding of the structure-function relationships of natural systems constitutes a step towards a blueprint for the construction of artificial light-harvesting devices that can reproduce the efficacy of natural systems.


References

[1]  R. E. Blankenship, D. M. Tiede, J. Barber, G. W. Brudvig, G. Fleming, M. Ghirardi, M. R. Gunner, W. Junge, D. M. Kramer, A. Melis, T. A. Moore, C. C. Moser, D. G. Nocera, A. J. Nozik, D. R. Ort, W. W. Parson, R. C. Prince, R. T. Sayre, Science 2011, 332, 805.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXlslylsLk%3D&md5=7fef5a2be0a1e90cdea051d4e8001fa9CAS |

[2]  R. E. Blankenship, Molecular Mechanisms of Photosynthesis, 2002 (Blackwell Publishing: Oxford).

[3]  J. P. Dekker, E. J. Boekema, BBA-Bioenergetics 2005, 1706, 12.
         | 1:CAS:528:DC%2BD2cXhtFGht77J&md5=0faa83b1aa067447c8a89177543fbd2dCAS |

[4]  J. Nield, J. Barber, BBA-Bioenergetics 2006, 1757, 353.
         | 1:CAS:528:DC%2BD28Xmsl2jsb4%3D&md5=6cc5d788a3ca042933b20220944cbf5aCAS |

[5]  S. Caffarri, R. Kouil, S. Kereche, E. Boekema, R. Croce, EMBO J. 2009, 28, 3052.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXpvFCrtLo%3D&md5=9d91d4294c37f43e9ff2631ed8b280c6CAS |

[6]  H. van Amerongen, L. Valkunas, R. van Grondelle, Photosynthetic Excitons, 2000 (World Scientific: Singapore).

[7]  H. Kirchhoff, Trends Plant Sci. 2008, 13, 201.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXlvVWgtL0%3D&md5=20c6887bb41247a1d8885243e372ee17CAS |

[8]  P. Jordan, P. Fromme, H. Witt, O. Klukas, W. Saenger, N. Krauß, Nature 2001, 411, 909.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3MXkvVWhs78%3D&md5=1506f78aea17e4f9f2bc4dbc635defaeCAS |

[9]  G. Beddard, G. Porter, Nature 1976, 260, 366.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaE28XktlSktbs%3D&md5=10593416b1de513a6da875665c825b7cCAS |

[10]  Z. F. Liu, H. C. Yan, K. B. Wang, T. Y. Kuang, J. P. Zhang, L. L. Gui, X. M. An, W. R. Chang, Nature 2004, 428, 287.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXitFCntbc%3D&md5=dc220abbcad5e1363d76885afecfc505CAS |

[11]  G. S. Schlau-Cohen, T. R. Calhoun, N. S. Ginsberg, M. Ballottari, R. Bassi, G. R. Fleming, Proc. Natl. Acad. Sci. USA 2010, 107, 13276.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXht1GrurvE&md5=425a055a1ef0d03d60afb713fe08ccfeCAS |

[12]  G. S. Schlau-Cohen, T. R. Calhoun, N. S. Ginsberg, E. L. Read, M. Ballottari, R. Bassi, R. van Grondelle, G. R. Fleming, J. Phys. Chem. B 2009, 113, 15352.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXhtlWrurfK&md5=e7c5a27324b5e135ce24101adade6b28CAS |

[13]  R. Remelli, C. Varotto, D. Sandonà, R. Croce, R. Bassi, J. Biol. Chem. 1999, 274, 33510.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1MXns1ejs7w%3D&md5=7340034df047330d3cda3abedde50683CAS |

[14]  H. van Amerongen, R. van Grondelle, J. Phys. Chem. B 2001, 105, 604.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3cXptVWhsrs%3D&md5=b0a12d7ff5998673f6821995d5421be3CAS |

[15]  R. van Grondelle, V. I. Novoderezhkin, Phys. Chem. Chem. Phys. 2006, 8, 793.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XhtFymur0%3D&md5=841a1eb3329aedb9e680ca4333542678CAS |

[16]  G. Schlau-Cohen, A. Ishizaki, G. Fleming, Chem. Phys. 2011, 386, 1.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXpvVyltbk%3D&md5=896824ad95e894b3da0ca65501fe879bCAS |

[17]  V. Novoderezhkin, R. van Grondelle, Phys. Chem. Chem. Phys. 2010, 12, 7352.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXotlWms7o%3D&md5=b9b34b9eea60a927acd3ff289c63b877CAS |

[18]  D. M. Jonas, Annu. Rev. Phys. Chem. 2003, 54, 425.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXntFSgsLs%3D&md5=16ebab243298c129f89af85a262cb592CAS |

[19]  M. Cho, Two-Dimensional Optical Spectroscopy, 2009 (CRC Press: Boca Raton, FL).

[20]  G. S. Schlau-Cohen, J. M. Dawlaty, G. R. Fleming, IEEE J. Sel. Top. Quant. Elect. 2012, 18, 283.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XjtFaitr4%3D&md5=2d3537fab5de0f22fb1f433111a3ebeaCAS |

[21]  R. Agarwal, B. P. Krueger, G. D. Scholes, M. Yang, J. Yom, L. Mets, G. R. Fleming, J. Phys. Chem. B 2000, 104, 2908.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3cXhs1Wkurs%3D&md5=75b4a6f3950a93572cdde0f9ca6abd05CAS |

[22]  J. M. Salverda, M. Vengris, B. P. Krueger, G. D. Scholes, A. R. Czamoleski, V. Novoderezhkin, H. van Amerongen, R. van Grondelle, Biophys. J. 2003, 84, 450.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXisVSmsA%3D%3D&md5=b7f773188f33affc3172e3503a47a71eCAS |

[23]  V. Novoderezhkin, M. Palacios, H. van Amerongen, R. van Grondelle, J. Phys. Chem. B 2004, 108, 10363.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXks1agtbo%3D&md5=c4904ca5bb05aa2fec06c1c01a07568cCAS |

[24]  V. I. Novoderezhkin, M. A. Palacios, H. van Amerongen, R. van Grondelle, J. Phys. Chem. B 2005, 109, 10493.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXjs1SjtLk%3D&md5=8eed60638c1fa43daf0af37f5d9f1e4fCAS |

[25]  S. Georgakopoulou, G. van der Zwan, R. Bassi, R. Van Grondelle, H. van Amerongen, R. Croce, Biochemistry 2007, 46, 4745.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXjslWgs7c%3D&md5=85dedfeff154a41c296e53ebfc78ae18CAS |

[26]  K. Gibasiewicz, M. Rutkowski, R. Van Grondelle, Photosynthetica 2009, 47, 232.
         | Crossref | GoogleScholarGoogle Scholar |

[27]  T. R. Calhoun, N. S. Ginsberg, G. S. Schlau-Cohen, Y.-C. Cheng, M. Ballottari, R. Bassi, G. R. Fleming, J. Phys. Chem. B 2009, 113, 16291.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXht1yntLnP&md5=dbb253e65482873ef5b736ae041a757aCAS |

[28]  G. Scholes, G. Fleming, A. Olaya-Castro, R. Van Grondelle, Nat. Chem. 2011, 3, 763.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXht1ajurzF&md5=421bf4c2a62e8c4d9d6f91dfe1147472CAS |

[29]  G. Fleming, G. Schlau-Cohen, K. Amarnath, J. Zaks, Faraday Discuss. 2012, 155, 27.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38Xhs1eltLw%3D&md5=1f428125857a6dd733d59b1d71ec55f7CAS |

[30]  M. Gouterman, The Porphyrins, 1978, Volume III (Academic Press: New York, NY).

[31]  M. Linke, A. Lauer, T. von Haimberger, A. Zacarias, K. Heyne, J. Am. Chem. Soc. 2008, 130, 14904.
         | Crossref | GoogleScholarGoogle Scholar |

[32]  J. Adolphs, T. Renger, Biophys. J. 2006, 91, 2778.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XhtVGls7vO&md5=8094ac5d2677a62105e43bf75a170f38CAS |

[33]  F. Müh, M. Madjet, J. Adolphs, A. Abdurahman, B. Rabenstein, H. Ishikita, E. Knapp, T. Renger, Proc. Natl. Acad. Sci. USA 2007, 104, 16862.
         | Crossref | GoogleScholarGoogle Scholar |

[34]  F. Muh, M. Madjet, T. Renger, J. Phys. Chem. B 2010, 114, 13517.
         | Crossref | GoogleScholarGoogle Scholar |

[35]  E. L. Read, G. S. Schlau-Cohen, G. S. Engel, J. Wen, R. E. Blankenship, G. R. Fleming, Biophys. J. 2008, 95, 847.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXotlKhsLY%3D&md5=b62a507d2b839fbe967455d10830e018CAS |

[36]  T. Brixner, T. Mancˇal, I. V. Stiopkin, G. R. Fleming, J. Chem. Phys. 2004, 121, 4221.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXmvVCnurs%3D&md5=c42c291dbd0c39c6ab263557d3448e9fCAS |

[37]  A. W. Albrecht, J. D. Hybl, S. M. Gallagher Faeder, D. M. Jonas, J. Chem. Phys. 1999, 111, 10934.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1MXnvV2gs7c%3D&md5=4e66c5ac3b67c8df2ba9791bd3887b81CAS |

[38]  M. L. Cowan, J. P. Ogilvie, R. J. D. Miller, Chem. Phys. Lett. 2004, 386, 184.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXhsVKis7c%3D&md5=6780898ce6c69c1deccc1fc0a85098fdCAS |

[39]  U. Selig, F. Langhojer, F. Dimler, T. Lohrig, C. Schwarz, B. Gieseking, T. Brixner, Opt. Lett. 2008, 33, 2851.
         | Crossref | GoogleScholarGoogle Scholar |

[40]  S. H. Shim, M. T. Zanni, Phys. Chem. Chem. Phys. 2009, 11, 748.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXnsVWlsg%3D%3D&md5=5bcb93e0d1f0f10e3a21e807a801ee17CAS |

[41]  A. D. Bristow, D. Karaiskaj, X. C. Dai, S. T. Cundiff, Opt. Express 2008, 16, 18017.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXhsVOhsb3P&md5=2b8abe19634a682d1ace0f6c4b16eb6eCAS |

[42]  A. Nemeth, J. Sperling, J. Hauer, H. F. Kauffmann, F. Milota, Opt. Lett. 2009, 34, 3301.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXhsF2jtbbM&md5=4941b48cb5c99568fc9079718318e885CAS |

[43]  S. Mukamel, Principles of Nonlinear Optical Spectroscopy, 1995 (Oxford University Press: New York, NY).

[44]  R. M. Hochstrasser, Chem. Phys. 2001, 266, 273.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3MXjtFCqtLs%3D&md5=ef6d21340ba269a65743886055697679CAS |

[45]  J. Dreyer, A. M. Moran, S. Mukamel, Bull. Korean Chem. Soc. 2003, 24, 1091.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXotFKqt7w%3D&md5=4c2015ec2438b821fee674a11483b647CAS |

[46]  A. Ishizaki, G. R. Fleming, J. Chem. Phys. 2009, 130, 234111.
         | Crossref | GoogleScholarGoogle Scholar |

[47]  A. Ishizaki, T. R. Calhoun, G. S. Schlau-Cohen, G. R. Fleming, Phys. Chem. Chem. Phys. 2010, 12, 7319.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXotlWms7c%3D&md5=d0cf2c30fe9f8c61164dea8810973befCAS |

[48]  V. Novoderezhkin, A. Marin, R. van Grondelle, Phys. Chem. Chem. Phys. 2011, 13, 17093.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXht1Slt7nI&md5=2db9c223ca4b4ce35a418e306e2ddc80CAS |

[49]  G. S. Engel, T. R. Calhoun, E. L. Read, T.-K. Ahn, T. Mančal, Y.-C. Cheng, R. E. Blankenship, G. R. Fleming, Nature 2007, 446, 782.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXktVeqt78%3D&md5=1c3f3f1e836ddcf37f7dbad06c584e49CAS |

[50]  H. Lee, Y.-C. Cheng, G. R. Fleming, Science 2007, 316, 1462.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXmtFSjsbs%3D&md5=71ef643de0b34a5537fb13244988783dCAS |

[51]  E. Collini, C. Y. Wong, K. E. Wilk, P. M. G. Curmi, P. Brumer, G. D. Scholes, Nature 2010, 463, 644.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXhsVygu7o%3D&md5=7bb2bb8d5d43cb7b6b580c410c8877b1CAS |

[52]  G. Panitchayangkoon, D. Hayes, K. A. Fransted, J. R. Caram, E. Harel, J. Wen, R. E. Blankenship, G. S. Engel, Proc. Natl. Acad. Sci. USA 2010, 107, 12766.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXpsVagt7g%3D&md5=b335ff4ceb5e8325ae1bf66fd65eff1cCAS |

[53]  A. Ishizaki, G. R. Fleming, Proc. Natl. Acad. Sci. USA 2009, 106, 17255.
         | Crossref | GoogleScholarGoogle Scholar |

[54]  A. Ishizaki, G. R. Fleming, New J. Phys. 2010, 12, 055004.
         | Crossref | GoogleScholarGoogle Scholar |

[55]  M. T. Zanni, N.-H. Ge, Y. S. Kim, R. M. Hochstrasser, Proc. Natl. Acad. Sci. USA 2001, 98, 11265.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3MXnt1yqt7Y%3D&md5=c3690d85deab74fa93ddbc632e82ade1CAS |

[56]  G. S. Schlau-Cohen, A. Ishizaki, T. R. Calhoun, N. S. Ginsberg, M. Ballottari, R. Bassi, G. R. Fleming, Nat. Chem. 2012, 4, 389.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XksVehtLs%3D&md5=0553986f7675459467e729df4a911a0dCAS |

[57]  M. Mohseni, P. Rebentrost, S. Lloyd, A. Aspuru-Guzik, J. Chem. Phys. 2008, 129, 174106.
         | Crossref | GoogleScholarGoogle Scholar |

[58]  P. Rebentrost, M. Mohseni, A. Aspuru-Guzik, J. Phys. Chem. B 2009, 113, 9942.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXns1Sitrw%3D&md5=99e45e84a17962f819bd6518b93949c1CAS |

[59]  M. B. Plenio, S. F. Huelga, New J. Phys. 2008, 10, 113019.
         | Crossref | GoogleScholarGoogle Scholar |

[60]  A. Olaya-Castro, C. F. Lee, F. F. Olsen, N. F. Johnson, Phys. Rev. B 2008, 78, 085115.
         | Crossref | GoogleScholarGoogle Scholar |

[61]  A. Melis, Plant Sci. 2009, 177, 272.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXpt1KgsrY%3D&md5=1e6610bab2a1457a8cfafa0d36e4ef8dCAS |

[62]  D. Noy, C. Moser, P. Dutton, BBA-Bioenergetics 2006, 1757, 90.
         | 1:CAS:528:DC%2BD28XisF2nsb8%3D&md5=bcb25eb8cc687aa145f71b9aa7c45760CAS |

[63]  G. Steinberg-Yfrach, P. Liddell, S. Hung, A. Moore, D. Gust, T. Moore, Nature 1997, 385, 239.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2sXlslWktA%3D%3D&md5=d1f135f7cee09a105f4abdaa4eff0b15CAS |

[64]  G. Steinberg-Yfrach, J. Rigaud, E. Durantini, A. Moore, D. Gust, T. Moore, Nature 1998, 392, 479.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1cXisFent7c%3D&md5=21ce04e9b9eac6e72028e47a4a4d1d61CAS |

[65]  Y. Terazono, G. Kodis, P. Liddell, V. Garg, T. Moore, A. Moore, D. Gust, J. Phys. Chem. B 2009, 113, 7147.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXltVCgtr0%3D&md5=eb8f31d6f993af04f99f249feae66030CAS |

[66]  M. Kanan, D. Nocera, Science 2008, 321, 1072.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXhtVSitrbP&md5=4d554995a8442318e37fd3fd4f64344fCAS |

[67]  B. Hardin, E. Hoke, P. Armstrong, J. Yum, P. Comte, T. Torres, J. Fréchet, M. Nazeeruddin, M. Grätzel, M. McGehee, Nat. Photonics 2009, 3, 406.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXnvVagt78%3D&md5=5936bb2edca034f6dfb8560826cd7a40CAS |

[68]  C. Faulkner, S. Lees, P. Ciesielski, D. Cliffel, G. Jennings, Langmuir 2008, 24, 8409.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXos1ahtr8%3D&md5=9bae57e65982a4c42782deb7d6de35cbCAS |

[69]  N. Lewis, D. Nocera, Proc. Natl. Acad. Sci. USA 2006, 103, 15729.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XhtFymtbrJ&md5=e4252961598780ced30bcd2df19c9437CAS |