Preparation and Characterization of Catalysts for Clean Energy: A Challenge for X-rays and Electrons
Rosalie K. Hocking A B D , Shery L. Y. Chang A C , Douglas R. MacFarlane A B and Leone Spiccia A BA School of Chemistry, Monash University, Clayton, Vic. 3800, Australia.
B Australian Centre for Electromaterials Science, ACES.
C Monash Centre for Electron Microscopy, Monash University, Clayton, Vic. 3800, Australia.
D Corresponding author. Email: rosalie.hocking@monash.edu
Rosalie Hocking is currently a research fellow working for the Australian Centre for Electromaterials Science. Her research focuses on understanding the mechanistic chemistry of metal oxides and sulfides as chemical catalysis for hydrogen generation. |
Shery (Lan Yun) Chang is currently a research fellow jointly appointed by the Monash Centre Electron Microscopy and the School of Chemistry at Monash University. Her research focuses on the development and application of advanced transmission electron microscopy techniques to the structure–property relationships of nanocatalysts at an atomic level. |
Douglas MacFarlane is an ARC Federation Fellow at Monash University. He is also the program leader of the Energy Program in the ARC funded Australian Centre for Electromaterials Science. His research interests include the development of ionic liquids for use in catalysis and energy storage. |
Leone Spiccia is currently Professor of Chemistry at Monash University. His research interests include the development of photoactive and redox active metal complexes for incorporation into dye sensitized solar cells and bio-inspired catalysts for use in water splitting devices made from earth abundant elements. |
Australian Journal of Chemistry 65(6) 608-614 https://doi.org/10.1071/CH12016
Submitted: 16 January 2012 Accepted: 6 March 2012 Published: 18 May 2012
Abstract
One of the most promising approaches to addressing the challenges of securing cheap and renewable energy sources is to design catalysts from earth abundant materials capable of promoting key chemical reactions including splitting water into hydrogen and oxygen (2H2O → 2H2 + O2) as well as both the oxidation (H2 → 2H+) and reduction (2H+ → H2) of hydrogen. Key to elucidating the origin of catalytic activity and improving catalyst design is determining molecular-level structure, in both the ‘resting state’ and in the functioning ‘active state’ of the catalysts. Herein, we explore some of the analytical challenges important for designing and studying new catalytic materials for making and using hydrogen. We discuss a case study that used the combined approach of X-ray absorption spectroscopy and transmission electron microscopy to understand the fate of the molecular cluster, [Mn4O4L6]+, in Nafion.
References
[1] Stemp-Morlock, The biggest challenges of the 21st century. Cosmos Magazine Online 2008, 1855.[2] A. Jha, Leading thinkers identify greatest challenges facing humanity. The Guardian 2008. www.guardian.co.uk/science/2008/feb/15/technological.challenges (verified March 2012).
[3] J. Twidell, A. Weir, Renewable Energy Resources 2006 (Taylor and Francis: New York).
[4] J.-P. Rodrigue, C. Comtois, Transportation and energy, in The Geography of Transport Systems 2010. http://people.hofstra.edu/geotrans/eng/ch8en/conc8en/ch8c2en.html (verified March 2012).
[5] T. R. Cook, D. K. Dogoutan, S. Y. Reece, Y. Surendranath, T. S. Teets, D. G. Nocera, Chem. Rev. 2010, 110, 6474.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXhtl2lsb3I&md5=438de29bdee38432d249bcc4efea7a26CAS |
[6] F. A. Armstrong, Phil. Trans. R. Soc. B. 2008, 363, 1263.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXktFeis78%3D&md5=19c00af68697f2b6c04e35bce313f414CAS |
[7] Y. Umena, K. Kawakami, J.-R. Shen, N. Kamiya, Nature 2011, 473, 55.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXkslCmtLg%3D&md5=f7b48594fae4a870a2b3d1c7ed10df43CAS |
[8] A. S. Pandey, T. V. Harris, L. J. Giles, J. W. Peters, R. K. Szilagyi, J. Am. Chem. Soc. 2008, 130, 4533.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXivV2gsbg%3D&md5=78776dcdb1d310db2a81c3b2bb905e1cCAS |
[9] J. Yano, J. Kern, K. Sauer, M. J. Latimer, Y. Pushkar, J. Bisiadka, B. Loll, W. Saenger, J. Messinger, A. Souni, V. K. Yachandra, B. Lo, Science 2006, 314, 821.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XhtFKit73N&md5=347b86e74bdd04fa290532ebbe2c7265CAS |
[10] B. Kok, B. Forbush, M. McGloin, Photochem. Photobiol. 1970, 11, 457.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaE3cXltFOgtL0%3D&md5=7bcc634b1f81b1d998a3396bf222ab34CAS |
[11] G. C. Dismukes, R. Brimblecombe, G. A. N. Felton, R. S. Pyradum, J. E. Sheats, L. Spiccia, G. F. Swiegers, Acc. Chem. Res. 2009, 42, 1935.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXhsVSgtb%2FL&md5=7ee1e63bbf20e924e0a4d165bd1f212dCAS |
[12] K. Fujisawa, K. Honda, Nature 1972, 238, 37.
| Crossref | GoogleScholarGoogle Scholar |
[13] G. Hodes, D. Cahen, J. Manassen, Nature 1976, 260, 312.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaE28Xks1GlsLo%3D&md5=7b522a966ca57af743b1da1c93ff968dCAS |
[14] N. P. Luneva, V. Y. Shafirovich, A. E. Silov, J. Mol. Catal. 1989, 52, 49.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL1MXlslWjt7s%3D&md5=123f821dc12d14affb1434f1c89eb894CAS |
[15] V. Y. Shafirovich, N. K. Khannanov, A. E. Shilov, J. Inorg. Biochem. 1981, 15, 113.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL3MXmtVSkt7o%3D&md5=b57a21aef0ec376f0ee2f63993cee4b2CAS |
[16] S. Trasatti, G. Buzzanca, J. Electroanal. Chem. 1971, 29, 1.
| 1:CAS:528:DyaE3MXhtF2gtbk%3D&md5=c913e83e20598ddf17c9fdb7791e87bfCAS |
[17] M. Hara, T. W. Mallouk, Chem. Commun. 2000, 19, 1903.
| Crossref | GoogleScholarGoogle Scholar |
[18] M. Hara, C. C. Waraksa, J. T. Lean, B. A. Lewis, T. Mallouk, J. Phys. Chem. A 2000, 104, 5275.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3cXivFeqtrY%3D&md5=eda2636fbdcffe31a7c1d54c92174094CAS |
[19] M. W. Kanan, D. G. Nocera, Science 2008, 321, 1072.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXhtVSitrbP&md5=4d554995a8442318e37fd3fd4f64344fCAS |
[20] M. W. Kanan, J. Yano, Y. Surendranath, M. Dinca, V. K. Yachandra, J. Am. Chem. Soc. 2010, 132, 13692.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXhtFGru7zM&md5=540cc424d400d53fa31ddfbaffecfcd3CAS |
[21] C. S. C. Bose, K. Rajeshwar, J. Electroanal. Chem. 1992, 235, 235.
[22] L. Y. Chang, A. S. Barnard, L. C. Gontard, R. E. Dunin-Borkowski, Nano Lett. 2010, 10, 3073.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXptlymu7w%3D&md5=e6033f5302278eb4086edda73aef8969CAS |
[23] R. Adams, Org. Synth. 1928, 8, 463.
[24] M. S. Kim, S. Lim, N. K. Chaudhari, B. Fang, T.-S. Bau, J.-S. Yu, Catal. Today 2010, 158, 354.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXhsV2ktrfO&md5=e76f48856a4f383efcbc648ab7cb220eCAS |
[25] L.-Y. Chang, S. Lazar, E. A. Baranova, C. Bock, G. A. Botton, Microsc. Microanal. 2009, 15, 1416.
| Crossref | GoogleScholarGoogle Scholar |
[26] A. J. Bard, M. A. Fox, Acc. Chem. Res. 1995, 28, 141.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2MXjvFOksrc%3D&md5=6043a9013ec104828d604e3be78af8f9CAS |
[27] J. S. Jang, D. L. Ham, N. Lakshminarasimhan, W. Y. Choi, J. S. Lee, Appl. Catal. A 2008, 346, 149.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXosl2ksrk%3D&md5=2257c900e8700bfa26650e85e8dcc6ceCAS |
[28] B. Winther-Jensen, K. Fraser, C. Ong, M. Forsyth, D. R. MacFarlane, Adv. Mater. (Deerfield Beach Fla.) 2010, 22, 1727.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXltVyqtL8%3D&md5=fed2082535042c822df0cad820d70908CAS |
[29] T. B. Rauchfuss, Inorg. Chem. 2004, 43, 14.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXps1Gmtrs%3D&md5=16b91472c4620354a4d2980edf9586afCAS |
[30] C. Tard, C. J. Pickett, Chem. Rev. 2009, 109, 2245.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXlslOqsLw%3D&md5=63444de617192ccbc5115d4b4d03af6bCAS |
[31] A. Paracchino, V. Laporte, K. Sivula, M. Gratzel, E. Thimsen, Nat. Mater. 2011, 10, 456.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXlvVahurg%3D&md5=4d58cdee5d0bea10131040c0b389aafdCAS |
[32] R. E. Blankenship, D. M. Tiede, J. Barber, G. W. Brudvig, G. Fleming, M. Ghirardi, M. R. Gunner, W. Junge, D. M. Kramer, A. Melis, T. A. Moore, C. C. Moser, D. G. Nocera, A. J. Nozik, D. R. Ort, W. W. Parson, R. C. Prince, R. T. Sayre, Science 2011, 332, 805.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXlslylsLk%3D&md5=7fef5a2be0a1e90cdea051d4e8001fa9CAS |
[33] Note that we refer to ‘bulk scale single crystals’ to distinguish the materials from nanoscale crystals whose structure can be solved by electron diffraction.
[34] Note that this is not true for biological materials because of the very large number of atoms in the unit cell.
[35] F. A. Walker, Coord. Chem. Rev. 1999, 185–186, 471.
| Crossref | GoogleScholarGoogle Scholar |
[36] E. Murad, J. Cashion, Mossbauer Spectroscopy of Environmental Materials and their Industrial Utilization, 2003 (Kluwer Academic Publishers: Dordrecht).
[37] C. J. Ballhausen, Molecular Electronic Structures of Transition Metal Complexes, 1979 (McGraw-Hill).
[38] R. K. Hocking, E. I. Solomon, in Structure and Bonding Molecular Electronic Structures of Transition Metal Complexes, 2012, pp. 1–30 (Eds D. M. P. Mingos, P. Day, J. P. Dahl) (Springer).
[39] R. H. Holm, P. Kennepohl, Chem. Rev. 1996, 96, 2239.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK28Xmt1Gnu7o%3D&md5=629c145d075c206d3e92b68d25072333CAS |
[40] E. I. Solomon, M. D. Lowery, Science 1993, 259, 1575.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK3sXit1yksro%3D&md5=27415e236c767b287e4b50056b2fcb0fCAS |
[41] E. I. Solomon, C. Brunhold Thomas, I. Davis Mindy, J. N. Kemsley, S.-K. Lee, N. Lehnert, F. Neese, A. Skulan, Y.-S. Yang, J. Zhou, Chem. Rev. 2000, 100, 235.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1MXnvF2qsLk%3D&md5=6e351a2ff92e0ae405c47f9656c448f1CAS |
[42] E. I. Solomon, M. A. Hanson, in Inorganic Electronic Structure and Spectroscopy, 1999 (Eds E. I. Solomon, A. B. P. Lever) (Wiley: New York).
[43] S. P. Cramer, K. O. Hodgson, Prog. Inorg. Chem. 1979, 25, 1.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL3cXksVSls7c%3D&md5=b5b74c3fe2346ead5e98bc2fe4b5a4dbCAS |
[44] H. H. Zhang, B. Hedman, K. O. Hodgson, in Inorganic Electronic Structure and Spectroscopy, 1999, pp. 513–554 (Eds E. I. Solomon, A. B. Lever) (Publisher:Wiley: New York).
[45] S. P. Best, M. H. Cheah, Rad Phys Chem. 2010, 79, 185.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXhsVaju7%2FI&md5=513f7d7f32e000a7b77941e832a77f5bCAS |
[46] M. I. Bondin, S. J. Borg, M. J. Cheah, G. J. Foran, S. P. Best, Aust. J. Chem. 2006, 59, 263.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XjvF2ktbg%3D&md5=954228554643ca5a7d1ad91d5ad547cdCAS |
[47] A. E. Russell, A. Rose, Chem. Rev. 2004, 104, 4613.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXmsVWjtLw%3D&md5=af9f776c7c72b97d2cfd8420a05c2120CAS |
[48] M. E. Herron, S. E. Doyle, S. Pizzini, K. J. Robert, J. Robinson, G. Hards, F. C. Walsh, J. Electroanal. Chem. 1992, 324, 243.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK38XktlGntb8%3D&md5=6cd2c75e400a8b2f06e5cd122d0a1d47CAS |
[49] J. M. de Leon, J. J. Rehr, S. I. Zabinsky, R. C. Albers, Phys. Rev. B 1991, 44, 4146.
| Crossref | GoogleScholarGoogle Scholar |
[50] J. J. Rehr, J. M. de Leon, S. I. Zabinsky, R. C. Albers, J. Am. Chem. Soc. 1991, 113, 5135.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK3MXktFOqs7w%3D&md5=e49cbf68cddd7d66dc51b4b409e7910aCAS |
[51] L. Cervera, L. Y. Chang, A. I. Kirkland, C. J. D. Hetherington, D. Ozkaya, R. E. Dunin, Angew. Chem. Int. Ed. 2007, 46, 3683.
| Crossref | GoogleScholarGoogle Scholar |
[52] C. Dwyer, M. Weyland, L. Y. Chang, Appl. Phys. Lett. 2011, 98, 201909.
| Crossref | GoogleScholarGoogle Scholar |
[53] D. Shechtman, I. Blech, D. Gratias, J. W. Cahn, Phys. Rev. Lett. 1984, 53, 1951.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL2MXhsFCgsQ%3D%3D&md5=8459f7484f0fe3c4b14a5876741d2f4fCAS |
[54] R. He, R. K. Hocking, T. Tsuzuki, J. Mat. Sci. 2011, 47, 3150.
| Crossref | GoogleScholarGoogle Scholar |
[55] R. Brimblecombe, A. Koo, G. C. Dismukes, G. F. Swiegers, L. Spiccia, J. Am. Chem. Soc. 2010, 132, 2892.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXhvFOrsbk%3D&md5=38c67e96d90d28202ba2f8cee848659cCAS |
[56] R. Brimblecombe, D. R. J. Kolling, A. M. Bond, G. C. Dismukes, G. F. Swiegers, L. Spiccia, Inorg. Chem. 2009, 48, 7269.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXotFKmtLo%3D&md5=3e224cbe7732d45f2023f1fb58b0808eCAS |
[57] R. Brimblecombe, A. Koo, G. F. Swiegers, G. C. Dismukes, L. Spiccia, ChemSusChem 2010, 3, 1146.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXhtlalu7bF&md5=8d7b155194f68ff0e07c4ca8bff88494CAS |
[58] R. Brimblecombe, G. F. Swiegers, G. C. Dismukes, L. Spiccia, Angew. Chem. Int. Ed. 2008, 47, 7335.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXhtF2it73O&md5=149c7e6e2168bc023e5384a4380f098dCAS |
[59] R. K. Hocking, R. Brimblecombe, S. L. Y. Chang, A. Singh, M. H. Cheah, C. Glover, W. H. Casey, L. Spiccia, Nat. Chem. 2011, 3, 461.
| 1:CAS:528:DC%2BC3MXmtV2htL0%3D&md5=e1a1da8eed8e7449a5936fba7038db72CAS |
[60] K. W. Mandernack, J. Post, B. M. Tebo, GeoChim Cos Acta 1995, 59, 4393.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2MXpsFSgtL4%3D&md5=d2932319faaa4ffcaed1f2c69677a834CAS |
[61] T. G. Spiro, J. R. Bargar, G. Sposito, B. M. Tebo, Acc. Chem. Res. 2010, 43, 2.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXhtFOiurfP&md5=9c1f0546c20225a9902e8d0aa6b92907CAS |
[62] B. M. Tebo, J. R. Bargar, B. G. Clement, G. J. Dick, K. J. Murray, D. Parker, R. Verity, S. M. Webb, Annu. Rev. Earth Planet. Sci. 2004, 32, 287.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXkvVyisro%3D&md5=5ea79cb99b7776a6b5bb1b564d581e4aCAS |