Register      Login
Australian Journal of Chemistry Australian Journal of Chemistry Society
An international journal for chemical science
RESEARCH FRONT

The Bromide–Carbon Monoxide Gas Phase Complex: Anion Photoelectron Spectroscopy and Ab Initio Calculations

Kim M. Lapere A , Rob J. LaMacchia A , Lin Hian Quak A , Marcus Kettner A , Stephen G. Dale A , Allan J. McKinley A and Duncan A. Wild A B
+ Author Affiliations
- Author Affiliations

A Chemistry, M313, School of Biomedical, Biomolecular, and Chemical Sciences, The University of Western Australia, Crawley WA 6009, Australia.

B Corresponding author. Email: duncan.wild@uwa.edu.au

Australian Journal of Chemistry 65(5) 457-462 https://doi.org/10.1071/CH12007
Submitted: 10 January 2012  Accepted: 23 January 2012   Published: 13 March 2012

Abstract

The anion photoelectron spectrum of the bromide–carbon monoxide complex is presented in combination with supporting ab initio calculations. The spectrum features transitions between anion and neutral van der Waals complexes, Br⋯CO. A stabilization energy of 0.14 ± 0.05 eV is extracted from the spectrum, while the predicted binding energy for the anion complex is 9.9 kJ mol–1 from CCSD(T)/aug-cc-pVTZ calculations. The electron affinity of the Br⋯CO complex is 3.50 ± 0.05 eV. The ab initio calculations reveal a previously unreported minimum for the neutral radical complex, namely the van der Waals Br⋯OC linear complex.


References

[1]  E. J. Bieske, A. M. Soliva, A. Friedmann, J. P. Maier, in Proceedings of the SPIE 1992, Volume 1638, pp. 254–263 (Ed. C. Y. Ng) (SPIE: Los Angeles, CA).

[2]  E. J. Bieske, Chem. Soc. Rev. 2003, 32, 231.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXkt1emt7s%3D&md5=8407e44766c11e3bc54613323d349f9cCAS |

[3]  D. A. Wild, E. J. Bieske, J. Chem. Phys. 2004, 121, 12276.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXhtFSnsrzN&md5=e88bb042f1f5c8f0e16012a0f013b1c0CAS |

[4]  D. A. Wild, P. J. Milley, Z. M. Loh, P. S. Weiser, E. J. Bieske, Chem. Phys. Lett. 2000, 323, 49.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3cXktVaks7Y%3D&md5=f1237ded0b04692f210e6790e3076641CAS |

[5]  R. M. D. Calvi, D. H. Andrews, W. C. Lineberger, Chem. Phys. Lett. 2007, 442, 12.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXmvVGjs7k%3D&md5=1611862a446e89d5f77051f88f3935e8CAS |

[6]  A. Kammrath, J. R. R. Verlet, G. B. Griffin, D. M. Neumark, J. Chem. Phys. 2006, 125, 076101.
         | Crossref | GoogleScholarGoogle Scholar |

[7]  J. Jellinek, P. H. Acioli, J. Garcia-Rodeja, W. Zheng, O. C. Thomas, K. H. Bowen, Phys. Rev. B 2006, 74, 153401.

[8]  X. Li, L. S. Wang, Eur. Phys. J. D 2005, 34, 9.
         | Crossref | GoogleScholarGoogle Scholar |

[9]  M. Ohara, K. Miyajima, A. Pramann, A. Nakajima, K. Kaya, J. Phys. Chem. A 2002, 106, 3702.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38XhvVGrsb8%3D&md5=558f5ef43c9e1197162948469b5ac67cCAS |

[10]  B. M. Elliott, L. R. McCunn, M. A. Johnson, Chem. Phys. Lett. 2008, 467, 32.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXhsVKrtbzF&md5=f89d3ccf5aaa8888cf73018f42be0d6cCAS |

[11]  K. M. Lapere, R. J. LaMacchia, L. H. Quak, A. J. McKinley, D. A. Wild, Chem. Phys. Lett. 2011, 504, 13.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXisVOjsLw%3D&md5=f92a56c72d6dee071934405dc0b99b39CAS |

[12]  A. D. Hewitt, K. M. Brahan, G. D. Boone, S. A. Hewitt, Int. J. Chem. Kinet. 1996, 28, 763.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK28XmtVykt70%3D&md5=6bc4ece846235f8dff8a8a6693c0562cCAS |

[13]  H. Pernice, P. Garcia, H. Willner, J. S. Francisco, F. P. Mills, M. Allen, Y. L. Yung, P. Natl. Acad. Sci. USA 2004, 101, 14007.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXosVylsrw%3D&md5=ca77af2067c6a011dda31c05126ee1cdCAS |

[14]  W. G. Burns, F. S. Dainton, Trans. Faraday Soc. 1952, 48, 39.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaG38XktVyrtg%3D%3D&md5=6fa1f7c4f75f03686696da1db9a32f6aCAS |

[15]  R. M. Romano, C. O. Della Vedova, A. J. Downs, Y. A. Tobon, H. Willner, Inorg. Chem. 2005, 44, 3241.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXivVeku7w%3D&md5=ac7aefcf76ac7f3b4e8c0912896f8250CAS |

[16]  D. A. Dixon, K. A. Peterson, J. S. Francisco, J. Phys. Chem. A 2000, 104, 6227.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3cXjvV2ktbw%3D&md5=8c0c5bd879b61ee6dcd958f9b72ea926CAS |

[17]  M. E. Jacox, D. E. Milligan, J. Chem. Phys. 1965, 43, 866.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaF2MXkt1yrur4%3D&md5=2a9907506798f606d1d4aa79f7359abbCAS |

[18]  F. J. Adrian, V. A. Bowers, E. L. Cochran, J. Chem. Phys. 1972, 56, 6251.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaE38Xkt1Oisbk%3D&md5=ab4c983ae9fcdee8ca7395e93260cc1dCAS |

[19]  H. Schnöckel, R. A. Eberlein, H. S. Plitt, J. Chem. Phys. 1992, 97, 4.
         | Crossref | GoogleScholarGoogle Scholar |

[20]  S. H. Chen, L. K. Chu, Y. J. Chen, I. C. Chen, Y. P. Lee, Chem. Phys. Lett. 2001, 333, 365.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3MXntFKnsg%3D%3D&md5=e405ac767e753943bd314236833b144dCAS |

[21]  A. Hinchliffe, J. Mol. Struct. 1980, 64, 117.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL3cXksFCmtr0%3D&md5=1c6ccd610be5793bec84152c45642faaCAS |

[22]  J. S. Francisco, A. N. Goldstein, Chem. Phys. 1988, 128, 367.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL1MXhsl2ktLY%3D&md5=7ac76ce68f7f8bb2635d8a3547a69769CAS |

[23]  J. S. Francisco, N. J. Abersold, J. Chem. Phys. 1992, 96, 1134.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK38XptFylsA%3D%3D&md5=7d660d7ed23c5df6e398d5730ef6fa84CAS |

[24]  T. Krossner, L. Zulicke, M. Staikova, S. D. Peyerimhoff, Chem. Phys. Lett. 1995, 241, 511.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2MXntl2itb0%3D&md5=589c35969c17302015802d410c32c292CAS |

[25]  S. H. Chien, K. C. Lau, W. K. Li, C. Y. Ng, J. Phys. Chem. A 1999, 103, 7918.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1MXlvVSitrw%3D&md5=89b9be49c7668f7faaa931b0eb6b7ff6CAS |

[26]  T. C. Clark, M. A. A. Clyne, D. H. Stedman, Trans. Faraday Soc. 1966, 62, 3354.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaF2sXktFSksQ%3D%3D&md5=4e43b8da4fce18f7b156a420573ce8e0CAS |

[27]  T. Ohta, Bull. Chem. Soc. Jpn. 1983, 56, 869.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL3sXhs1Kgsrc%3D&md5=893e5655fff0049ab56fdf03a3287c3cCAS |

[28]  J. M. Nicovich, K. D. Kreutter, P. H. Wine, J. Chem. Phys. 1990, 92, 3539.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK3cXit1Chtro%3D&md5=eb80cf7736694a64b657fb009ac6db58CAS |

[29]  Y. A. Tobón, L. I. Nieto, R. M. Romano, C. O. Della Vedova, A. J. Downs, J. Phys. Chem. A 2006, 110, 2674.
         | Crossref | GoogleScholarGoogle Scholar |

[30]  A. J. Bridgeman, Inorg. Chim. Acta 2001, 321, 27.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3MXms1Omtbs%3D&md5=d35c02ef60e43bfd8989fd2a8adc672aCAS |

[31]  S. H. Vosko, L. Wilk, M. Nusair, Can. J. Phys. 1980, 58, 1200.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL3cXlvFagt74%3D&md5=fc2a476bde285d930f81dd65253dd051CAS |

[32]  A. D. Becke, Phys. Rev. A 1988, 38, 3098.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL1cXmtlOhsLo%3D&md5=4e325aafa58d58509cc76a9081d284e4CAS |

[33]  J. P. Perdew, Phys. Rev. B 1986, 33, 8822.
         | Crossref | GoogleScholarGoogle Scholar |

[34]  W. C. Wiley, I. H. McLaren, Rev. Sci. Instrum. 1955, 26, 1150.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaG2sXjtlClsQ%3D%3D&md5=de03e66a363ab58bd57fb02dd2fed7e1CAS |

[35]  O. Cheshnovsky, S. H. Yang, C. L. Pettiette, M. J. Craycraft, R. E. Smalley, Rev. Sci. Instrum. 1987, 58, 2131.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL1cXhtlKjtg%3D%3D&md5=0cf472113c1e3a467c176cc66244faa5CAS |

[36]  J. L. Tech, J. Res. Natl. Bur. Stand. (US) 1963, 67A, 505.
         | 1:CAS:528:DyaF2cXivVWisA%3D%3D&md5=6e9d248ed3beb0012cea6276a60b0ddbCAS |

[37]  L. Minnhagen, Ark. Fys. 1962, 21, 415.

[38]  D. E. Woon, T. H. Dunning, J. Chem. Phys. 1993, 98, 1358.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK3sXhtlans7Y%3D&md5=6bf0d97ff2e02cb60420bcefa1f82fbdCAS |

[39]  K. A. Peterson, D. Figgen, E. Goll, H. Stoll, M. Dolg, J. Chem. Phys. 2003, 119, 11113.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXovFyms7w%3D&md5=5f537223123c6fb4004115dbd7ed4260CAS |

[40]  M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, B. Mennucci, G. A. Petersson, H. Nakatsuji, M. Caricato, X. Li, H. P. Hratchian, A. F. Izmaylov, J. Bloino, G. Zheng, J. L. Sonnenberg, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, J. A. Montgomery, Jr, J. E. Peralta, F. Ogliaro, M. Bearpark, J. J. Heyd, E. Brothers, K. N. Kudin, V. N. Staroverov, R. Kobayashi, J. Normand, K. Raghavachari, A. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, N. Rega, N. J. Millam, M. Klene, J. E. Knox, J. B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R. E. Stratmann, O. Yazyev, A. J. Austin, R. Cammi, C. Pomelli, J. W. Ochterski, R. L. Martin, K. Morokuma, V. G. Zakrzewski, G. A. Voth, P. Salvador, J. J. Dannenberg, S. Dapprich, A. D. Daniels, Ö. Farkas, J. B. Foresman, J. V. Ortiz, J. Cioslowski, D. J. Fox, Gaussian 09 2009 (Gaussian Inc.: Wallingford, CT).

[41]  S. F. Boys, F. Bernardi, Mol. Phys. 1970, 19, 553.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXht1alt7fM&md5=3313841d741866de3c5ba40d0c276461CAS |

[42]  E. P. Wigner, Phys. Rev. 1948, 73, 1002.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaH1cXis12lsQ%3D%3D&md5=9e37ed1253f383c86b20b47a7869d560CAS |

[43]  D. W. Arnold, S. E. Bradforth, E. H. Kim, D. M. Neumark, J. Chem. Phys. 1995, 102, 3510.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2MXjvFGqtbc%3D&md5=016a984cf8cc97e98e4b2c1afee3dfaaCAS |

[44]  G. Markovich, S. Pollack, R. Giniger, O. Cheshnovsky, J. Chem. Phys. 1994, 101, 9344.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2MXisFChtrk%3D&md5=5ba9be494ad9ac0c961ef1488eec2b39CAS |

[45]  G. Maroulis, Chem. Phys. Lett. 2001, 334, 214.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3MXpt1Oktg%3D%3D&md5=efbd7c23a47458d91ce49bdce9ba9979CAS |

[46]  G. Maroulis, J. Phys. Chem. 1996, 100, 13466.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK28XktlGjsrk%3D&md5=a7fba3f3dcc4153e3441be6df60bf853CAS |

[47]  N. Chetty, V. W. Couling, Mol. Phys. 2011, 109, 655.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXjtFSnsbs%3D&md5=8606a78aa8db880b9294da1d4a4c7c3bCAS |