Register      Login
Australian Journal of Chemistry Australian Journal of Chemistry Society
An international journal for chemical science
RESEARCH ARTICLE

Three-Membered Metal-Nucleobase-Carboxylate System Showing Interesting 2D and 3D Architecture: Synthesis, Structure, Thermostability, and Magnetic Properties

Hai-Xiao Huang A , Xiao-Zhao Tian A , Yu-Mei Song A , Zhen-Wei Liao A , Gong-Ming Sun A , Ming-Biao Luo A , Shu-Juan Liu A , Wen-Yuan Xu A and Feng Luo A B
+ Author Affiliations
- Author Affiliations

A College of Biology, Chemistry and Material Science, East China Institute of Technology, Fuzhou, Jiangxi 344000, P. R. China.

B Corresponding author. Email: ecitluofeng@163.com

Australian Journal of Chemistry 65(3) 320-325 https://doi.org/10.1071/CH11404
Submitted: 20 October 2011  Accepted: 21 December 2011   Published: 2 February 2012

Abstract

Via hydrothermal synthesis, we constructed four nucleobase metal-organic compounds, viz. Zn2(7H-ade)(oba)2·H2O (1), Zn(1H-hyp)(Hoba) (2), Ni(1H-ade)(ip) (3), and Cd(H2O)(9H-ade)(ip) (4), where ade, hyp, H2oba, and H2ip are adenine, hypoxanthine, 4,4′-oxybisbenzoic acid, and isophthalic acid, respectively. These polymers show novel 2D and 3D structures, such as 3-fold interpenetrating dmp net, supramolecular zeolite-type sra net, and exceptional 2D 44 net composed of three kinds of quadrangle, observed in polymers 1, 2, and 3, respectively. Moreover, thermogravimetric studies of polymers 1, 2, and 4, and the magnetic properties of 3 are also explored.


References

[1]  K. Aoki, J.-M. Lehn, Supramol. Chem. 1996, 5, 249.
         | 1:CAS:528:DyaK28XltFWjs7s%3D&md5=49bc790273b18e4eefd963dd29499632CAS |

[2]  F. Zamora, M. Kunsman, M. Sabat, B. Lippert, Inorg. Chem. 1997, 36, 1583.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2sXitVGjsbk%3D&md5=9e04933583852e097b30abf1c1b301afCAS |

[3]  B. Lippert, Coord. Chem. Rev. 2000, 200–202, 487.
         | Crossref | GoogleScholarGoogle Scholar |

[4]  Md Abdus Salam, K Aoki, Inorg. Chim. Acta 2000, 311, 15.

[5]  C. Price, B. R. Horrocks, A. Mayeux, M. R. J. Elsegood, W. Clegg, A. Houlton, Angew. Chem. Int. Ed. 2002, 41, 1047.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38XisVeisbw%3D&md5=cd015ebffb4c86f7841c2352c20be09bCAS |

[6]  B. Moulton, M. J. Zaworotko, Chem. Rev. 2001, 101, 1629.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3MXjtlyqtrg%3D&md5=0ec1805352261bb34603861c709ec7e4CAS |

[7]  S. L. James, Chem. Soc. Rev. 2003, 32, 276.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXmtFOltLY%3D&md5=18e85417abbd8f938c3b0fd2cdea5924CAS |

[8]  K. T. Holman, Angew. Chem. Int. Ed. 2011, 50, 1228.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXhsFCmtLk%3D&md5=cacb8c4a33fa17abe2ef9aeb74791471CAS |

[9]  H. X. Deng, C. J. Doonan, H. Furukawa, R. B. Ferreira, J. Towne, C. B. Knobler, B. Wang, O. M. Yaghi, Science 2010, 327, 846.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXhslWju7o%3D&md5=aa04812de4c326ca59452979ab59858fCAS |

[10]  J. P. García-Terán, O. Castillo, A. Luque, U. García-Couceiro, G. Beobide, P. Román, Dalton Trans. 2006, 902.
         | Crossref | GoogleScholarGoogle Scholar |

[11]  T. Suzuki, Y. Hirai, H. Monjushiro, S. Kaizaki, Inorg. Chem. 2004, 43, 6435.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXntFCqtL8%3D&md5=6401aef172df529b9c336caacde59428CAS |

[12]  J. P. García-Terán, O. Castillo, A. Luque, U. García-Couceiro, G. Beobide, P. Román, L. Lezama, Inorg. Chem. 2004, 43, 4549.
         | Crossref | GoogleScholarGoogle Scholar |

[13]  E. C. Yang, H. K. Zhao, Y. Feng, X. J. Zhao, Inorg. Chem. 2009, 48, 3511.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXjtFyqs7k%3D&md5=fb9a654951fc8f4065e1b15691824738CAS |

[14]  J. H. An, S. J. Geib, N. L. Rosi, J. Am. Chem. Soc. 2009, 131, 8376.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXms1Kntbw%3D&md5=57e96fcc5600340ba4330e6db7230782CAS |

[15]  J. H. An, S. J. Geib, N. L. Rosi, J. Am. Chem. Soc. 2010, 132, 38.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXhsFGhtb%2FE&md5=015a3916faa81527ad88e2be4b634687CAS |

[16]  J. A. R. Navarro, B. Lippert, Coord. Chem. Rev. 1999, 185–186, 653.
         | Crossref | GoogleScholarGoogle Scholar |

[17]     (a) M. O’Keeffe, O. M. Yaghi, Reticular Chemistry Structure Resource, Arizona State University, Tempe, AZ, 2005, http://okeeffe-ws1.la.asu.edu/rcsr/home.htm
         (b) S. J. Ramsden, V. Robins, S. Hungerford, S. T. Hyde, 2006, www.epinet.anu.edu.au
         (c) V. A. Blatov, 2006, http://www.topos.ssu.samara.ru/
      (d) V. A. Blatov, A. P. Shevchenko, V. N. Serezhkin, J. Appl. Cryst. 2000, 33, 1193.
         | Crossref | GoogleScholarGoogle Scholar |

[18]  S. A. Bourne, J. J. Lu, B. Moulton, M. J. Zaworotko, Chem. Commun. 2001, 861.

[19]  M. J. Plater, T. Gelbrich, M. B. Hursthouse, B. M. De Silva, CrystEngComm 2007, 10, 125.
         | Crossref | GoogleScholarGoogle Scholar |

[20]  X. J. Li, R. Cao, Z. G. Guo, W. H. Bi, D. Q. Yuan, Inorg. Chem. Commun. 2006, 9, 551.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XktVyns7g%3D&md5=dd91570659dd369da756dcf23c19cb67CAS |

[21]  S. Hu, H. H. Zou, M. H. Zeng, Q. X. Wang, H. Liang, Cryst. Growth Des. 2008, 8, 2346.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXmvVGqs7c%3D&md5=664d5b58afaece17422939a700216676CAS |

[22]  O. Kahn, Molecular Magnetism 1993 (VCH Publishers, Inc.: New York, NY).

[23]  O. Waldmann, Coord. Chem. Rev. 2005, 249, 2550.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXht1Gnt73E&md5=5b9df9b66638fc1d53cb255d002aa531CAS |