Register      Login
Australian Journal of Chemistry Australian Journal of Chemistry Society
An international journal for chemical science
RESEARCH ARTICLE

Towards the Development of a Direct Electrochemical Biodetector of Avidin Based on the Poly(chloro amino-β-styryl terthiophene)-Coated Glassy Carbon Electrode

Hakim Mehenni A C and Lê H. Dao B
+ Author Affiliations
- Author Affiliations

A Functional Nanomaterials Laboratory, Department of Materials Science, King Abdullah University of Science and Technology, Thuwal 23955, Kingdom of Saudi Arabia.

B Laboratoires de Recherche sur les Matériaux organiques Avancés, INRS-Energie et Matériaux, 1650 Bd Lionel Boulet, Varennes, Québec, Canada J3X 1S2.

C Corresponding author. Email: hakim.mehenni@kaust.edu.sa

Australian Journal of Chemistry 65(4) 395-401 https://doi.org/10.1071/CH11397
Submitted: 17 October 2011  Accepted: 19 February 2012   Published: 30 March 2012

Abstract

In this study, a simple and direct biodetector was proposed, which was based on biotin immobilized onto a conducting polymer-coated electrode, for the detection of avidin, a highly stable glycoprotein found in egg-whites. Biotin was immobilized onto the electrode by covalent coupling to the primary amine group on the poly 3′-(3-chloro-4-amino-β-styryl)-(2,2′ : 5′,2″-terthiophene) (PCAST), and the biotin–avidin interaction was monitored by cyclic voltammetry. Incubation of the PCAST/biotin-modified-coated electrode with avidin in a phosphate buffered saline solution caused a significant change to its cyclic voltammogram, which was explained by the binding of avidin by biotin, and resulted in restricted ion transfer to and from the conducting polymer. This change was then utilized to detect avidin at 4 × 10–6 mol L–1.


References

[1]  E. Gizeli, C. R. Lowe, Anal. Biotechnol. 1996, 7, 66.
         | 1:CAS:528:DyaK28Xhtlahtrw%3D&md5=798e53d48fdc2a58d94cea39d1fe0fabCAS |

[2]  P. R. Teasdale, G. G. Wallace, Analyst 1993, 118, 329.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK3sXis1Gnurg%3D&md5=dee30b1ae38c3032b01c897413cfc72eCAS |

[3]  G. Daminelli, J. Widany, A. Di Carlo, P. Lugli, J. Chem. Phys. 2001, 115, 4919.
         | 1:CAS:528:DC%2BD3MXmt1Wqur4%3D&md5=62dcfa03b25cde4f9d787e1faf02ff14CAS |

[4]  J. Roncali, Chem. Rev. 1992, 92, 711.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK38XktVyms7w%3D&md5=8ea03d3d28f6c231663d4f504c7c529fCAS |

[5]  H. A. Ho, M. Boissinot, M. G. Bergeron, G. Corbeil, K. Dore, D. Boudreau, M. Leclerc, ACS Symp. Ser. 2004, 888, 359.
         | Crossref | GoogleScholarGoogle Scholar |

[6]  A. Uygun, Talanta 2009, 79, 194.
         | 1:CAS:528:DC%2BD1MXnvVCmu7Y%3D&md5=0d11cf96a38404486e19fa16d438675eCAS |

[7]  M. Liu, C. Luo, H. Peng, Talanta 2012, 88, 216.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XhtFKlsr4%3D&md5=f3cc8de5c2408a84ff997e89235db551CAS |

[8]  H. Guan, M. Cai, L. Chen, Y. Wang, Z. He, Luminescence 2010, 25, 311.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXht1Squ7nO&md5=072ef14aa279a9a79d5c3b6d405929acCAS |

[9]  J. S. Higgins, F. Mouffouk, S. J. Brown, D. R. Williams, A. R. Cossins, Sensor. Actuat. B–Chem. 2007, 122, 253.

[11]  L. Cui, M. Xu, J. Zhu, S. Ai, Synth. Met. 2011, 161, 1686.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXhtVWjt7nL&md5=1fb7116e751189133b4fda23e3bd7162CAS |

[12]  W. C. A. Koh, M. A. Rahman, E. S. Choe, D. K. Lee, Y.-B. Shim, Biosens. Bioelectron. 2008, 23, 1374.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXjtlCgtb0%3D&md5=e85e88987569f783f60b75f9c7e005c0CAS |

[13]  F. Liao, S. Yin, M. F. Toney, V. Subramanian, Sensor. Actuat. B–Chem. 2010, 150, 254.
         | Crossref | GoogleScholarGoogle Scholar |

[14]  V. C. Goncalves, D. T. Balogh, Sensor. Actuat. B–Chem. 2012, 162, 307.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XitFGmsbg%3D&md5=38527e539e87de4bf78931cdb97ca763CAS |

[15]  J. Chen, A. K. Burrell, G. E. Collis, D. L. Officer, G. F. Swiegers, C. O. Too, G. G. Wallace, Electrochim. Acta 2002, 47, 2715.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38XkslSjuro%3D&md5=690597f7361215c3d9d6fb7303eaffd4CAS |

[16]  A. Uygun, A. G. Yavuz, S. Sen, M. Omastová, Synth. Met. 2009, 159, 2022.
         | 1:CAS:528:DC%2BD1MXht1aisr3E&md5=7bf6e484085608d5b90a0f66060afb9bCAS |

[17]  M. F. Abasıyanık, M. Şenel, J. Electroanal. Chem. 2010, 639, 21.

[18]  P.-C. Nien, M.-C. Huang, F. Y. Chang, K.-C. Ho, Electroanalysis 2008, 20, 635.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXkvVymtbY%3D&md5=acd9a78ac8bf5d3c40d56d90602d1905CAS |

[19]  L. Kumpumbu-Kalemba, M. Leclerc, Chem. Commun. 2000, 1847.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3cXmslyit7k%3D&md5=42b30fbeadd95f6426f731b0100222eaCAS |

[20]  F. Mouffouk, S. J. Brown, A. M. Demetriou, S. J. Higgins, R. J. Nichols, R. M. G. Rajapakse, S. Reeman, J. Mater. Chem. 2005, 15, 1186.
         | 1:CAS:528:DC%2BD2MXitVCnurs%3D&md5=32de017b961e4ddcedbb01a3245467e4CAS |

[21]  F. Mouffouk, S. J. Higgins,, Electrochem. Commun. 2006, 8, 15.
         | 1:CAS:528:DC%2BD2MXhtlGls7fO&md5=8b80b64c67bda76ff5020e5e3dae3100CAS |

[22]  F. Darain, D.-S. Park, J.-S. Park, Y.-B. Shim, Biosens. Bioelectron. 2004, 19, 1245.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXisVehs78%3D&md5=ea755ae87465b7d5313a8a7fa5939585CAS |

[23]  H. Mehenni, L. H. Dao, Can. J. Chem. 2008, 86, 1010.
         | Crossref | GoogleScholarGoogle Scholar |

[24]  M. D. Savage, G. Mattson, S. Desai, G. W. Nielander, S. Morgensen, E. J. Conklin, Avidin-Biotin Chemistry: A Handbook, 1992 (Pierce Chemical Co.: Rockford, IL).

[25]  M. Wilchek, E. A. Bayer, in Methods in Enzymology: Avidin-Biotin Technology, 1990 (Eds J. N. Abelson, M. I. Simon) 184 (Academic Press: San Diego, CA).

[26]  R. M. Eales, A. R. Hillman, J. Mater. Sci. 1990, 25, 3806.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK3cXmtFakt7Y%3D&md5=aef39075f2f56bc8a95d6cdb58a18695CAS |

[27]  P. Gao, D. Gosztola, M. J. Weaver, J. Phys. Chem. 1989, 93, 3753.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL1MXhvVWnurw%3D&md5=03f98e8f12d3bdc18a91f7bea073d5ccCAS |

[28]  E. M. Garrido, J. L. F. C. Lima, C. Delerue-Matos, F. Borges, A. M. S. Silva, A. M. Oliveira Brett, Anal. Chim. Acta 2001, 434, 35.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3MXjt12nsbY%3D&md5=01097e4a65a8e59b363a2bbd347e3814CAS |

[29]  A. I. Vogel, A. R. Tatchell, B. S. Furnis, A. J. Hannaford, P. W. G. Smith, VOGEL’s Textbook of Practical Organic Chemistry 1989, 5th edition (Longman Scientific and Technical: New York, NY).

[30]  R. M. Silverstein, F. X. Webster, Spectrometric Identification of Organic Compounds 1997, 6th edition (Wiley: New York, NY).

[31]  L. N. Petrulyanis, G. A. Veinberg, L. I. Kononov, I. V. Dipan, É. Ya. Lukevits, Chem. Heterocyc. Compd. 1983, 19, 630.