Free Standard AU & NZ Shipping For All Book Orders Over $80!
Register      Login
Australian Journal of Chemistry Australian Journal of Chemistry Society
An international journal for chemical science
RESEARCH ARTICLE

Synthesis, Functionalization and Reductive Degradation of Multibrominated Disulfide-containing Hyperbranched Polymers

Delia-Laura Popescu A and Nicolay V. Tsarevsky A B C
+ Author Affiliations
- Author Affiliations

A Department of Chemistry, Southern Methodist University, 3215 Daniel Avenue, Dallas, TX 75275, USA.

B Center for Drug Discovery, Design, and Delivery in Dedman College, Southern Methodist University, Dallas, TX 75275, USA.

C Corresponding author. Email: nvt@smu.edu

Australian Journal of Chemistry 65(1) 28-34 https://doi.org/10.1071/CH11376
Submitted: 22 September 2011  Accepted: 14 November 2011   Published: 12 December 2011

Abstract

Reductively degradable hyperbranched polymethacrylates with multiple peripheral alkyl bromide groups were synthesized by the azobis(2-isobutyronitrile)-initiated copolymerization of diethylene glycol methyl ether methacrylate or oligo(ethylene oxide) methyl ether methacrylate with the disulfide-containing crosslinker bis(2-methacryloyloxyethyl)disulfide (2.5–10.0 mol-% relative to the monomer) in the presence of carbon tetrabromide (10–40-fold excess relative to the radical initiator) as efficient chain transfer agent. The alkyl bromide groups initiated the atom-transfer radical polymerization of methyl methacrylate, and star copolymers with hyperbranched disulfide-containing cores were formed. Both the macroinitiators and the star copolymers derived from them were degraded in reducing environment.


References

[1]  Star and Hyperbranched Polymers (Eds M. K. Mishra, S. Kobayashi) 1999, Vol. 53 (Marcel Dekker: New York).

[2]  B. Voit, J. Polym. Sci. A Polym. Chem. 2000, 38, 2505.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3cXkt1aqsbY%3D&md5=74a962af90912451dae7b9dedeac9ab7CAS |

[3]  A. Sunder, J. Heinemann, H. Frey, Chemistry 2000, 6, 2499.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3cXltFCrsLg%3D&md5=b0af0003014bd3674d88ad13fda16c3bCAS |

[4]  M. Jikei, M. Kakimoto, Prog. Polym. Sci. 2001, 26, 1233.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3MXptFCisro%3D&md5=fbffae49ec0334e6ec4a1c741407640bCAS |

[5]  Y. H. Kim, O. Webster, J. Macromol. Sci. – Pol. Rev. 2002, 42, 55.
         | Crossref | GoogleScholarGoogle Scholar |

[6]  C. Gao, D. Yan, Prog. Polym. Sci. 2004, 29, 183.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXhs1CrsL8%3D&md5=73d602eb9106eb77baca8f07c30b4e13CAS |

[7]  B. Voit, J. Polym. Sci. A Polym. Chem. 2005, 43, 2679.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXls1Gkurw%3D&md5=425aecd9bc9a745fc1a5921715a16c39CAS |

[8]  D. Taton, X. Feng, Y. Gnanou, N. J. Chem. 2007, 31, 1097.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXntlWrsbY%3D&md5=251dfc33155d57e6c2d220363254dbceCAS |

[9]  H. Mori, A. H. E. Mueller, P. F. W. Simon, in Macromolecular Engineering: Precise Synthesis, Materials Properties, Applications (Eds K. Matyjaszewski, Y. Gnanou, L. Leibler) 2007, Vol. 2, pp. 973–1005 (Wiley-VCH: Weinheim).

[10]  G. V. Korolev, M. L. Bubnova, Polym. Sci. Ser. C 2007, 49, 332.
         | Crossref | GoogleScholarGoogle Scholar |

[11]  B. Voit, A. Lederer, Chem. Rev. 2009, 109, 5924.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXhtF2lurjP&md5=5619f39d86a599d4c2b1de37c6b2d7d3CAS |

[12]  G. Jiang, W. Chen, W. Xia, Designed Monom. Polym. 2008, 11, 105.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXls1Wqt7g%3D&md5=658a97a7fa563bc678313c667b567d98CAS |

[13]  H. Chen, K. Ishizu, T. Fukutomi, T. Kakurai, J. Polym. Sci. Polym. Chem. Ed. 1984, 22, 2123.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL2cXmtFWrs7k%3D&md5=75bba39ad47719ac72340b8859e900e4CAS |

[14]  H. Chen, Y. M. Won, K. Ishizu, T. Fukutomi, Polym. J. 1985, 17, 687.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL2MXktVKku7w%3D&md5=d12ff6b8c7bb80c0640dab95ad493607CAS |

[15]  T. Sato, N. Sato, M. Seno, T. Hirano, J. Polym. Sci. A Polym. Chem. 2003, 41, 3038.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXntlaitrw%3D&md5=0f2fd5592c0ed05a1137960d843d600cCAS |

[16]  T. Sato, T. Miyagi, T. Hirano, M. Seno, Polym. Int. 2004, 53, 1503.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXotFehsLg%3D&md5=bc3bd8f3c9be4e993955e67abc514202CAS |

[17]  T. Sato, T. Nakamura, M. Seno, T. Hirano, Polymer 2006, 47, 4630.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XlvFymsb0%3D&md5=3fec606c079b400afba0ab57ed1ee645CAS |

[18]  J. M. J. Frechet, M. Henmi, I. Gitsov, S. Aoshima, M. R. Leduc, R. B. Grubbs, Science 1995, 269, 1080.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2MXns12ms7c%3D&md5=6839252ea1aac177867b1e68ddf5895aCAS |

[19]  C. J. Hawker, J. M. J. Frechet, R. B. Grubbs, J. Dao, J. Am. Chem. Soc. 1995, 117, 10763.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2MXosF2jsbc%3D&md5=1ac28610d37fc0147ac7b8ee512730c8CAS |

[20]  A. V. Ambade, A. Kumar, Prog. Polym. Sci. 2000, 25, 1141.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3cXosVOitbg%3D&md5=c6d731bd94365543eb7ef4b7bae90efbCAS |

[21]  N. O’Brien, A. McKee, D. C. Sherrington, A. T. Slark, A. Titterton, Polymer 2000, 41, 6027.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3cXjtVehsb8%3D&md5=754ba7f51634e2f3bd0b504aeab6f99aCAS |

[22]  P. A. Costello, I. K. Martin, A. T. Slark, D. C. Sherrington, A. Titterton, Polymer 2002, 43, 245.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3MXnvFWgsbs%3D&md5=85ab8565ad95571f6048d18984c1b45cCAS |

[23]  A. T. Slark, D. C. Sherrington, A. Titterton, I. K. Martin, J. Mater. Chem. 2003, 13, 2711.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXotlyqurw%3D&md5=352b8c8d50e8036a72589435fd16a176CAS |

[24]  S. Camerlynck, P. A. G. Cormack, D. C. Sherrington, G. Saunders, J. Macromol. Sci. Part B Phys. 2005, 44, 881.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XktFek&md5=2c23be2ddc124eb937cacb38b4f76e3fCAS |

[25]  F. Isaure, P. A. G. Cormack, S. Graham, D. C. Sherrington, S. P. Armes, V. Buetuen, Chem. Commun. 2004, 1138.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXjsVOrsr8%3D&md5=25b0142927095245b6671bf56029c962CAS |

[26]  Y. Li, S. P. Armes, Macromolecules 2005, 38, 8155.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXovFWhsr8%3D&md5=116a3f2fc063946f6b818f03f2976d78CAS |

[27]  H. Gao, K. Matyjaszewski, Prog. Polym. Sci. 2009, 34, 317.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXjsl2hsL8%3D&md5=46d66688d531c70971690483b941d772CAS |

[28]  R. F. T. Stepto, Polym. Int. 2010, 59, 23.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXhsF2it73F&md5=4f408d38bb33e0bda0e33b0374b622f7CAS |

[29]  N. V. Tsarevsky, K. Matyjaszewski, Macromolecules 2005, 38, 3087.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXis1OhtLk%3D&md5=8ce72f296bcb93697fa3ba4a80f353c2CAS |

[30]  W. H. Li, A. E. Hamielec, C. M. Crowe, Polymer 1989, 30, 1513.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL1MXlslCksrk%3D&md5=ac29d454987bac8e3abc7508d881503aCAS |

[31]  M. J. M. Abadie, D. Ourahmoune, H. Mendjel, Eur. Polym. J. 1990, 26, 515.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK3cXksVWgtbY%3D&md5=21277b52a13cbcab4d0d954ce6711332CAS |

[32]  K. Matyjaszewski, J. Xia, Chem. Rev. 2001, 101, 2921.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3MXms1ersrc%3D&md5=7be9caeac332148dbcc8d227664213cbCAS |

[33]  M. Kamigaito, T. Ando, M. Sawamoto, Chem. Rev. 2001, 101, 3689.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3MXovFagtrg%3D&md5=85d367f31bb6fa9ca5bf9d480ef12c16CAS |

[34]  K. A. Davis, K. Matyjaszewski, Adv. Polym. Sci. 2002, 159, 1.
         | Crossref | GoogleScholarGoogle Scholar |

[35]  Y.-Y. Liu, H. Chen, K. Ishizu, Langmuir 2011, 27, 1168.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXivFCjtA%3D%3D&md5=04e6f7d1f668668f8b9bd1ece76f7233CAS |

[36]  N. Fuhrman, R. B. Mesrobian, J. Am. Chem. Soc. 1954, 76, 3281.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaG2cXntVCmuw%3D%3D&md5=b3340d5c2a87a3d453ee8fab8d271c28CAS |

[37]  C. H. Bamford, S. N. Basahel, J. Chem. Soc. Faraday I 1980, 76, 112.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL3cXhvFyrs7s%3D&md5=a5679add8c137b09ea85e8657fbba914CAS |

[38]  P. C. Jocelyn, Methods Enzymol. 1987, 143, 246.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL1cXntFKmsQ%3D%3D&md5=25868b4625fdcc0f0f97b5e1df01e4e0CAS |

[39]  R. Singh, G. V. Lamoureux, W. J. Lees, G. M. Whitesides, Methods Enzymol. 1995, 251, 167.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2MXptFOksLs%3D&md5=249fb32c1e58f42b8c11366afffb3a06CAS |

[40]  N. V. Tsarevsky, J. Huang, K. Matyjaszewski, J. Polym. Sci. A Polym. Chem. 2009, 47, 6839.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXhsVymtbnK&md5=0027668ba43d60bdb39914820eefef44CAS |

[41]  N. V. Tsarevsky, K. Min, N. M. Jahed, H. Gao, K. Matyjaszewski, ACS Symp. Ser. 2006, 939, 184.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXltFClt7Y%3D&md5=65d02620d810637036c4506109111c09CAS |

[42]  W. Jakubowski, K. Min, K. Matyjaszewski, Macromolecules 2006, 39, 39.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXht1Kkt7rI&md5=c489f9b7336a97957a15589a38daf1caCAS |

[43]  W. Jakubowski, K. Matyjaszewski, Angew. Chem. Int. Ed. 2006, 45, 4482.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XntFylt70%3D&md5=40193b480f85ca07619db2eb43b0b24dCAS |

[44]  K. Matyjaszewski, W. Jakubowski, K. Min, W. Tang, J. Huang, W. A. Braunecker, N. V. Tsarevsky, Proc. Natl. Acad. Sci. USA 2006, 103, 15309.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XhtFCjtLrI&md5=f21292eec6b0f244768539700fbd39cbCAS |

[45]  N. V. Tsarevsky, W. Jakubowski, J. Polym. Sci. A Polym. Chem. 2011, 49, 918.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXmsVeksg%3D%3D&md5=937c43653fc83243d23544b98e3d8a65CAS |

[46]  W. A. Braunecker, N. V. Tsarevsky, A. Gennaro, K. Matyjaszewski, Macromolecules 2009, 42, 6348.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXotVGlurs%3D&md5=ec1543bb4c529ec785039f5d82f26d37CAS |

[47]  A. Dondoni, Angew. Chem. Int. Ed. 2008, 47, 8995.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXhsVCnsrfO&md5=c26b284f1f81e6b1fc980ccd02403863CAS |

[48]  M. J. Kade, D. J. Burke, C. J. Hawker, J. Polym. Sci. A Polym. Chem. 2010, 48, 743.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXntlahug%3D%3D&md5=8a9b356ad8b999539b7c3ae970e1e861CAS |

[49]  R. Hoogenboom, Angew. Chem. Int. Ed. 2010, 49, 3415.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXlsFCntb0%3D&md5=71b8810369f0efd7911b547b2d3ad6b9CAS |