Influence of Surfactant Concentration on Laser-Based Gold Nanoparticle Formation and Stability
Yuen-Yan Fong A , Jason R. Gascooke B , Gregory F. Metha A and Mark A. Buntine C DA School of Chemistry and Physics, The University of Adelaide, Adelaide, SA 5005, Australia.
B School of Chemical and Physical Sciences, The Flinders University of South Australia, GPO Box 2100 Adelaide, SA 5001, Australia.
C Department of Chemistry, Curtin University, GPO Box U1987 Perth, WA 6845, Australia.
D Corresponding author. Email: m.buntine@curtin.edu.au
Australian Journal of Chemistry 65(2) 97-104 https://doi.org/10.1071/CH11366
Submitted: 15 September 2011 Accepted: 2 December 2011 Published: 19 January 2012
Abstract
The time evolution of gold nanoparticle (AuNP) yields by in-situ laser irradiation from bulk gold in aqueous solutions containing the surfactant sodium dodecylsulfate (SDS) at concentrations above and below the critical micelle concentration in water is reported. These studies are augmented by transmission electron microscopy images of AuNP samples at each SDS concentration recorded after 90 min of laser irradiation. The results show that while a low concentration of SDS plays a role in the formation kinetics, there is no apparent influence of the SDS concentration around the surfactant critical micelle concentration on particle size during AuNP production.
References
[1] M. C. Daniel, D. Astruc, Chem. Rev. 2004, 104, 293.| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXpvFGlur0%3D&md5=26695a487a434683ad39bd76ecfb49a0CAS |
[2] F. Favier, E. C. Walter, M. P. Zach, T. Benter, R. M. Penner, Science 2001, 293, 2227.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3MXntFCrsLo%3D&md5=75adc26b4040dda15d91b70f4bd64be1CAS |
[3] E. Hutter, J. H. Fendler, Adv. Mater. 2004, 16, 1685.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXpvVylur0%3D&md5=281a0c80961a55fd1e4d9ae46c5bf57cCAS |
[4] C. Z. Li, K. B. Male, S. Hrapovic, J. H. T. Luong, Chem. Commun. 2005, 3924.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXntlaqtbo%3D&md5=f9f62ce71a4d0688756e465d343187bcCAS |
[5] A. Reyhani, S. Z. Mortazavi, S. Mirershadi, A. Z. Moshfegh, P. Parvin, A. N. Golikand, J. Phys. Chem. C 2011, 115, 6994.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXjsVClu70%3D&md5=af56732aaa3322a85d08149e3cb2af3fCAS |
[6] S. Z. Mortazavi, P. Parvin, A. Reyhani, A. N. Golikand, S. Mirershadi, J. Phys. Chem. C 2011, 115, 5049.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXht1emtbc%3D&md5=7c361d740fdb00f0a100af338ae628d4CAS |
[7] M. Faraday, Philos. Trans. R. Soc. Lond. 1857, 147, 145.
| Crossref | GoogleScholarGoogle Scholar |
[8] V. Amendola, O. M. Bakr, F. Stellacci, Plasmonics 2010, 5, 85.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXjtlGnt7s%3D&md5=c9ff789059a7c619cc780c57fafea2d4CAS |
[9] V. Amendola, S. Polizzi, M. Meneghetti, J. Phys. Chem. B 2006, 110, 7232.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XisFWisr4%3D&md5=4b801bcbfd28181a7ad0acfe718e8bedCAS |
[10] E. Messina, G. Compagnini, L. D’Urso, O. Puglisi, S. Bagiante, S. Scalese, Radiat. Eff. Defect. S. 2010, 165, 579.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXhtFKhsLfK&md5=22f33810fce04eb084345034e5106627CAS |
[11] H. Muto, K. Miyajima, F. Mafuné, J. Phys. Chem. C 2008, 112, 5810.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXjsVGmsrw%3D&md5=5b3b0276823665da403ea265e692c353CAS |
[12] Z. J. Yan, R. Q. Bao, Y. Huang, A. N. Caruso, S. B. Qadri, C. Z. Dinu, D. B. Chrisey, J. Phys. Chem. C 2010, 114, 3869.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXhvFKiu74%3D&md5=90634f42849e6fa1dce5ebe99fe968a0CAS |
[13] M. Maillard, M. P. Pileni, S. Link, M. A. El-Sayed, J. Phys. Chem. B 2004, 108, 5230.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXisFaqurk%3D&md5=d798a520833be7734ac67b853a0696deCAS |
[14] L. S. Slaughter, W. S. Chang, P. Swanglap, A. Tcherniak, B. P. Khanal, E. R. Zubarev, S. Link, J. Phys. Chem. C 2010, 114, 4934.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXisFGlsrw%3D&md5=13e91220e67f588c9c70f4f2e3422f14CAS |
[15] C. Tabor, D. Van Haute, M. A. El-Sayed, ACS Nano 2009, 3, 3670.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXhtlKmsL7N&md5=d54da8b990fe10dd2d80af964f771082CAS |
[16] H. Staleva, S. E. Skrabalak, C. R. Carey, T. Kosel, Y. N. Xia, G. V. Hartland, Phys. Chem. Chem. Phys. 2009, 11, 5889.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXotlaiu78%3D&md5=711207ad79c8d59bf7f80ada8a451e5bCAS |
[17] V. Amendola, G. Mattei, C. Cusan, M. Prato, M. Meneghetti, Synth. Met. 2005, 155, 283.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXht12qtr%2FF&md5=2afc4c1e18084d01b4e83da1175d215dCAS |
[18] V. Amendola, M. Meneghetti, Phys. Chem. Chem. Phys. 2009, 11, 3805.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXlvVGktLc%3D&md5=288bfa0341ee47f217644b5ad752d4feCAS |
[19] V. Amendola, M. Meneghetti, J. Phys. Chem. C 2009, 113, 4277.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXit1Klsbg%3D&md5=0931ee36ddb72c6853e226a269cb292cCAS |
[20] G. Compagnini, A. A. Scalisi, O. Puglisi, J. Appl. Phys. 2003, 94, 7874.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXps1WltL0%3D&md5=b98bc728eff569cd0c805d2730d8ec18CAS |
[21] G. Compagnini, A. A. Scalisi, O. Puglisi, C. Spinella, J. Mater. Res. 2004, 19, 2795.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXotl2ju7k%3D&md5=4daab3e292bc20b8b849c460fd36d0acCAS |
[22] See special issue of J. Phys. Chem. C, ‘Trends and Current Topics in the Field of Laser Ablation and Nanoparticle Generation in Liquids’, 2011, 115 (12).
[23] F. Mafuné, T. Kondow, Chem. Phys. Lett. 2003, 372, 199.
| Crossref | GoogleScholarGoogle Scholar |
[24] K. Yamada, Y. Tokumoto, T. Nagata, F. Mafuné, J. Phys. Chem. B 2006, 110, 11751.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XkvFOhsbs%3D&md5=ea9ac9a07abc51f25cbde28fd8888da3CAS |
[25] F. Mafuné, J. Y. Kohno, Y. Takeda, T. Kondow, J. Phys. Chem. B 2002, 106, 7575.
| Crossref | GoogleScholarGoogle Scholar |
[26] M. Shoji, K. Miyajima, F. Mafuné, J. Phys. Chem. C 2008, 112, 1929.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXos1Wquw%3D%3D&md5=a486a4183a1172311505543cf433078dCAS |
[27] Y. Y. Fong, J. R. Gascooke, B. V. Visser, G. F. Metha, M. A. Buntine, J. Phys. Chem. C 2010, 114, 15931.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXmtVyntLs%3D&md5=d0fa9fa4eb75379decc87983a17e7b43CAS |
[28] J. Turkevich, Gold Bull. 1985, 18, 86.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL2MXlvVajurY%3D&md5=7a66471562fad32a5c62768013e97aaeCAS |
[29] J. Turkevich, Gold Bull. 1985, 18, 125.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL28Xls1Oqtg%3D%3D&md5=fad1d7ae439d614ba2fd073159cad045CAS |
[30] J. Kimling, M. Maier, B. Okenve, V. Kotaidis, H. Ballot, A. Plech, J. Phys. Chem. B 2006, 110, 15700.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XntVKgur4%3D&md5=f63ab5c17c2b02d7e1f32aa604a19e01CAS |
[31] B. Nikoobakht, M. El-Sayed, Chem. Mater. 2003, 15, 1957.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXivFGgu7w%3D&md5=2f97c10f3c8e53c8e2c053650926778dCAS |
[32] Y. Yang, S. Matsubara, M. Nogami, J. Shi, Mater. Sci. Eng. B 2007, 140, 172.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXmvV2gt7Y%3D&md5=acf0a9ce06b85c14e603c7fdc4609ff4CAS |
[33] K. Esumi, N. Sato, K. Torigoe, K. Meguro, J. Colloid Interface Sci. 1992, 149, 295.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK38XhtlKqsb4%3D&md5=0b73b0c61a2c12fb5c2b026cb76b8e3eCAS |
[34] J. P. Deng, C. H. Wu, C. H. Yang, C. Y. Mou, Langmuir 2005, 21, 8947.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXosVWlsrk%3D&md5=9a0b08304e25163e4735805dc180e67eCAS |
[35] F. Mafuné, J. Kohno, Y. Takeda, T. Kondow, H. Sawabe, J. Phys. Chem. B 2000, 104, 9111.
| Crossref | GoogleScholarGoogle Scholar |
[36] E. Dutkiewicz, A. Jakubowska, Colloid Polym. Sci. 2002, 280, 1009.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38XotVyqtbc%3D&md5=91043e6a4516f323b109bf67c84098deCAS |
[37] E. Gonzalez-Romero, M. B. Fernandez-Calvar, C. Bravo-Diaz, Langmuir 2002, 18, 10311.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38XovVSmsrw%3D&md5=275f6cba682e3222dbbf419883aa164eCAS |
[38] C. F. Bohren, D. R. Huffman, Absorption and Scattering of Light by Small Particles 1983 (Wiley-Interscience: New York, NY).
[39] F. Mafuné, J. Kohno, Y. Takeda, T. Kondow, J. Phys. Chem. B 2003, 107, 12589.
| Crossref | GoogleScholarGoogle Scholar |
[40] F. Mafuné, T. Kondow, Chem. Phys. Lett. 2004, 383, 343.
| Crossref | GoogleScholarGoogle Scholar |
[41] Y. Q. He, S. P. Liu, L. Kong, Z. F. Liu, Spectrochim. Acta A 2005, 61, 2861.
| Crossref | GoogleScholarGoogle Scholar |
[42] S. Link, M. A. El-Sayed, J. Phys. Chem. B 1999, 103, 8410.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1MXlslGntrs%3D&md5=64e5e425a1c0b84540b11988072eecbaCAS |
[43] S. Link, M. A. El-Sayed, Int. Rev. Phys. Chem. 2000, 19, 409.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3cXlsFOntrs%3D&md5=b915cc148a424cff63a6158877d80e93CAS |
[44] P. K. Jain, K. S. Lee, I. H. El-Sayed, M. A. El-Sayed, J. Phys. Chem. B 2006, 110, 7238.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XisFWitro%3D&md5=bbb12955207bec20b44e23e12143e96aCAS |
[45] U. Kreibig, M. Vollmer, Optical Properties of Metal Clusters 1995 (Springer: New York, NY).
[46] M. Brust, M. Walker, D. Bethell, D. J. Schiffrin, R. Whyman, J. Chem. Soc. Chem. Commun. 1994, 801.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2cXjtVCmurk%3D&md5=b42da8855a3165103ce8485878603974CAS |
[47] X. Liu, M. Atwater, J. Wang, Q. Huo, Colloids Surf. B 2007, 58, 3.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXlvVOksr0%3D&md5=f720dba592f396d189d1570eb85e8e44CAS |
[48] M. Almgren, S. Swarup, J. Phys. Chem. 1982, 86, 4212.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL38XlsFWiurc%3D&md5=534b36efe7a6f076dc874c28ee24d7efCAS |