Kinetics and Mechanism of the Reaction of Dichlorotetraaquaruthenium(iii) and Thiols
Suprava Nayak A C , Gouri Sankhar Brahma B and K. Venugopal Reddy AA Department of Chemistry, Osmania University, Hyderabad-500 007, India.
B Faculty of Science and Technology, The ICFAI University, Dehradun-248197, India.
C Corresponding author. Email: suprava7107@gmail.com
Australian Journal of Chemistry 65(2) 113-120 https://doi.org/10.1071/CH11352
Submitted: 26 August 2011 Accepted: 18 October 2011 Published: 25 November 2011
Abstract
The formation of an intermediate ruthenium(iii) thiolate complex by the interaction of thiols, RSH (R = glutathione and l-cysteine) and dichlorotetraaquaruthenium(iii), [RuIIICl2(H2O)4]+, is reported in the temperature range 25–40°C. The kinetics and mechanism of formation of the intermediate complex were studied as a function of [RuIIICl2(H2O)4]+, [RSH], pH, ionic strength and temperature. Reduction of the intermediate complex takes place slowly and results in the corresponding disulfides RSSR and [RuIICl2(H2O)4]+. The results are interpreted in terms of a mechanism involving a rate-determining inner-sphere one-electron transfer from RSH to the oxidant used in the present investigation and a comparison of rate and equilibrium constants is presented with activation parameters.
References
[1] (a) M. J. Clarke, Coord. Chem. Rev. 2003, 236, 209.| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXkvVyqtw%3D%3D&md5=d28d268f6e08c0f6c1f883366ebbd0cdCAS |
(b) P. A. Dyson, G. Sava, Dalton Trans 2006, 1929.
[2] E. Reisner, V. B. Arion, B. K. Keppler, A. J. Pombeiro, Inorg. Chim. Acta 2008, 361, 1569.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXislyqt78%3D&md5=b34c66f9e6d9ed027f7e5c4fef0dec41CAS |
[3] S. Kapitza, M. Pongratz, M. A. Jakupec, P. Heffeter, W. Berger, L. Lackinger, B. K. Keppler, B. Marian, J. Cancer Res. Clin. Oncol. 2005, 131, 101.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXntF2lsA%3D%3D&md5=0dc47d6f9295d8eb920c23b3557e08a1CAS |
[4] J. M. Rademaker-Lakhai, D. van den Bongard, D. Pluim, J. H. Beijnen, J. H. M. Schellens, Clin. Cancer Res. 2004, 10, 3717.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXksVKntr8%3D&md5=8de9881199571a5af5ddc24a1ed98077CAS |
[5] B. Gava, S. Zorzet, P. Spessotto, M. Cocchietto, G. Sava, J. Pharmacol. Exp. Ther. 2006, 317, 284.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XjsVWmtLc%3D&md5=9b40eda0ac37bc33ed1b73633dc87c42CAS |
[6] G. Sava, A. Bergamo, S. Zorzet, B. Gava, C. Casarsa, M. Cocchietto, A. Furlani, V. Scarcia, B. Serli, E. Iengo, E. Alessio, G. Mestroni, Eur. J. Cancer 2002, 38, 427.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38XovFSgsw%3D%3D&md5=6361d7c913fc78da548549f1c0ab6aadCAS |
[7] (a) M. Ravera, S. Baracco, C. Cassino, P. Zanello, D. Osella, Dalton Trans. 2004, 2347.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXlvF2is7o%3D&md5=7312c48ad803b91792500217536b73dfCAS |
(b) P. Schluga, C. G. Hartinger, A. Egger, E. Reisner, M. Galanski, M. A. Jakupec, B. Keppler, Dalton Trans. 2006, 1796.
| Crossref | GoogleScholarGoogle Scholar |
[8] M. M. Taqui Khan, R. S. Shukla, Polyhedron 1991, 10, 2711.
| Crossref | GoogleScholarGoogle Scholar |
[9] (a) M. M. Taqui Khan, G. Ramachandraiah, A. Prakash Rao, Inorg. Chem. 1986, 25, 665.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL28Xpslymsw%3D%3D&md5=35f2fcb4212db73f0775e920e24137beCAS |
(b) M. M. Taqui Khan, G. Ramachandraiah, Inorg. Chem. 1982, 21, 2109.
| Crossref | GoogleScholarGoogle Scholar |
[10] A. P. Arrigo, Free Radic. Biol. Med. 1999, 27, 936.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1MXns1ymsro%3D&md5=78d2fb55374b442f26f8820834c3e6a0CAS |
[11] C. E. Hand, J. F. Honek, J. Nat. Prod. 2005, 68, 293.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXktFeluw%3D%3D&md5=d84ff570995d3472f4d1a87e97bcc2c3CAS |
[12] C. Jacob, G. I. Giles, N. M. Giles, H. Sies, Angew. Chem. Int. Ed. 2003, 42, 4742.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXosFKntbg%3D&md5=59ccf4ca053e2331e54fb2195727b37cCAS |
[13] T. M. Buttke, P. A. Sandstrom, Immunol. Today 1994, 15, 7.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2cXhvVygsb8%3D&md5=7cbc5f21b1f133dbea0cd3e569757e30CAS |
[14] J. Darkwa, R. Olojo, E. Chikwana, R. H. Simoyi, J. Phys. Chem. A 2004, 108, 5576.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXktlGku7w%3D&md5=10e2ebd34ba22acbb368cf9d3ee1c07aCAS |
[15] T. Shi, J. Berglund, L. I. Elding, Inorg. Chem. 1996, 35, 3498.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK28XjtVWgsbw%3D&md5=8c63e094bff7d11fa1c4a82919a6e230CAS |
[16] X. Wang, D. M. Stanbury, Inorg. Chem. 2008, 47, 1224.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXisV2mtQ%3D%3D&md5=df8c156c003e2e1d427b2614fc20fe32CAS |
[17] A. Corazza, I. Harvey, P. Sadler, Eur. J. Biochem. 1996, 236, 697.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK28XhslWmurw%3D&md5=9a388adb889b5443ea21b768b3a7565aCAS |
[18] D. L. Rabenstein, K. K. Millis, K. H. Weaver, J. Org. Chem. 1993, 58, 4487.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK3sXkslejt78%3D&md5=6adb68e464f9bb8034725d6c0c2ab928CAS |
[19] R. Munday, C. M. Munday, C. C. Winterbourn, Free Radic. Biol. Med. 2004, 36, 757.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXhsFWkurc%3D&md5=90c47a557c9e373d8f1789e095bd9285CAS |
[20] O. Nekrassova, J. Kershaw, J. D. Wadhawan, N. S. Lawrence, R. G. Compton, Phys. Chem. Chem. Phys. 2004, 6, 1316.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXhvFyis7s%3D&md5=f5f0f054095c746bdfcb784a609621d5CAS |
[21] P. C. White, N. S. Lawrence, J. Davis, R. G. Compton, Electroanalysis 2002, 14, 89.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38XhsVKgt7c%3D&md5=7c45d793abf40a4d07f651ace68724d1CAS |
[22] C. C. Lucas, E. J. King, Biochem. J. 1932, 26, 2076.
| 1:STN:280:DC%2BD28zjsFWmug%3D%3D&md5=45a6f403165b0318a8ef60500773c5b5CAS |
[23] (a) M. Ahmed, M. S. Iqbal, N. Tahir, A. Islam, World Appl. Sci. Journal 2011, 14, 210.
| 1:CAS:528:DC%2BC3MXhtlajsL7L&md5=9bd63d094a5fec79d91c42cb4cf18da0CAS |
(b) J. A. Centeno, K. G. Ishak, F. G. Mullick, W. A. Gahl, T. J. O’Leary, Appl. Spectrosc. 1994, 48, 569.
| Crossref | GoogleScholarGoogle Scholar |
[24] A. E. Martell, R. M. Smith, Critical Stability Constants, 2nd Supplement, Vol. 6, p. 20 (Plenum: New York, NY).
[25] D. L. Rabenstein, J. Am. Chem. Soc. 1973, 95, 2797.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaE3sXktF2jurY%3D&md5=7665ac6ab3b15eb38df43d085f2bff81CAS |
[26] V. G. Povse, J. A. Olabe, Transit. Metal Chem. 1998, 23, 657.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1MXhvVWnurY%3D&md5=963efc45b4a34b46f79213db1cf74174CAS |
[27] D. Chatterjee, U. Pal, S. Ghosh, R. van Eldik, Dalton Trans. 2011, 1302.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXpsFyjug%3D%3D&md5=211bf10147045878eca3b321d01a9692CAS |
[28] D. Chatterjee, H. C. Bajaj, J. Coord. Chem. 1996, 39, 117.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2sXhtVSgsrY%3D&md5=54b1d07ebffa2ae16edb2788796ccd63CAS |
[29] D. Chatterjee, M. S. A. Hamza, M. M. Shoukry, A. Mitra, S. Deshmukh, R. van Eldik, Dalton Trans. 2003, 203.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXht1KisLo%3D&md5=4717c8763db9ba558b1b758d5795b94aCAS |
[30] C. G. Kuehn, H. Taube, J. Am. Chem. Soc. 1976, 98, 689.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaE28XhtFantr8%3D&md5=706caec886040a4f2f5a27d34881ab21CAS |
[31] D. R. Frasca, M. J. Clarke, J. Am. Chem. Soc. 1999, 121, 8523.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1MXls1Kqur4%3D&md5=2350e72f12fed31479de9b41fd78cdf5CAS |
[32] K. L. Brown, Inorg. Chim. Acta 1979, 37, L513.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL3cXktlamsLY%3D&md5=b0ec0a2ef78475359087dd8e6bfd7538CAS |
[33] F. Basolo, R. G. Pearson, Mechanisms of Inorganic Reactions. A Study of Metal Complexes in Solutions 1967, p. 34, 2nd edn (Wiley: New York, NY).
[34] M. A. Olatunji, A. McAuley, Can. J. Chem. 1977, 55, 3335.
| Crossref | GoogleScholarGoogle Scholar |
[35] B. K. Singh, Asian J. Chem. 2005, 17, 1.
| 1:CAS:528:DC%2BD2MXjvVahtQ%3D%3D&md5=b2b9dab3c0b1789cf35658c69e15695bCAS |
[36] M. Hartmann, K. G. Lipponer, B. K. Keppler, Inorg. Chim. Acta 1998, 267, 137.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2sXnsFeltL4%3D&md5=41850c087bbc3e152e9d8ad36daf5c8fCAS |