A Mass-Sensitive Approach for the Detection of Anaesthetic Xenon*
Oliver Hayden A , Usman Latif A and Franz L. Dickert A BA Department of Analytical Chemistry, University of Vienna, Waehringerstrasse 38, A–1090 Vienna, Austria.
B Corresponding author. Email: franz.dickert@univie.ac.at
Australian Journal of Chemistry 64(12) 1628-1632 https://doi.org/10.1071/CH11267
Submitted: 1 July 2011 Accepted: 23 August 2011 Published: 15 September 2011
Abstract
Quartz crystal microbalances (QCMs) were utilized for the detection of the noble gas xenon (Xe) by combining them with different recognition layers such as permethylated calixarenes (tetramethyl-tert-butylcalix[4]arene (Cal4Me), hexamethyl-tert-butylcalix[6]arene (Cal6Me)), and polyurethanes, with covalently embedded Cal4OH (Poly4Cal), or Cal6OH (Poly6Cal). A third type of sensitive material is synthesized from polyacrylic acid (PAA) and polyvinyl alcohol (PVA) and utilized as a sensitive coating. The results demonstrate that the Cal4Me layer gives higher response towards Xe, while, by the use of a second uncoated QCM channel, the influence of ambient humidity could be nearly completely compensated by signal subtraction. Moreover, the Cal4Me sensor shows excellent reversibility and rapid response time, providing a potentially reliable way to determine Xe during anaesthesia.
References
[1] Y. Zhang, R. Yuan, Y. Chai, W. Li, X. Zhong, H. Zhong, Biosens. Bioelectron. 2011, 26, 3977.| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXlsFWrsLw%3D&md5=7e4af50302cf9eed36b06de1be2284f9CAS |
[2] S.-W. Chen, K. Boubekeur, P. Gouzerh, A. Proust, J. Mol. Struct. 2011, 994, 104.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXlsV2isLw%3D&md5=b38f452e3609fb39f65b1c7c69ef5461CAS |
[3] B. Chakraborty, S. Basu, Chem. Phys. Lett. 2011, 507, 74.
| 1:CAS:528:DC%2BC3MXltFCjtbo%3D&md5=8f949b2847c19edb0c9156b05c785b2eCAS |
[4] X. Chen, S. G. Parker, G. Zou, W. Su, Q. Zhang, ACS Nano 2010, 4, 6387.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXhtleitLvP&md5=c379edb6fb136037d8af300f0247d58fCAS |
[5] X. Chen, H. Jiang, Y. Wang, G. Zou, Q. Zhang, Mater. Chem. Phys. 2010, 124, 36.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXhtFOqs7jF&md5=d2dee84319e2a7538f189b542d23e853CAS |
[6] T. Pinter, S. Jana, R. J. M. Courtemanche, F. Hof, J. Org. Chem. 2011, 76, 3733.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXkvVClu7w%3D&md5=cf3add7353709c41355db9f9b1473911CAS |
[7] O. I. Kalchenko, S. O. Cherenok, R. V. Rodik, A. B. Drapailo, S. I. Miroshnichenko, V. I. Kalchenko, Phosphorus, Sulfur Silicon Relat. Elem. 2011, 186, 898.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXlt1Sks70%3D&md5=5f72b7060815f190af23d619e807efa9CAS |
[8] L. Mutihac, J. H. Lee, J. S. Kim, J. Vicens, Chem. Soc. Rev. 2011, 40, 2777.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXkvVWjtL4%3D&md5=a8db8bec48fe8a03327ad0bca5ee04caCAS |
[9] S. Le Gac, J.-F. Picron, O. Reinaud, I. Jabin, Org. Biomol. Chem. 2011, 9, 2387.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXjsVGhsb8%3D&md5=811dd80d5950076cf096afa0f12d7a2cCAS |
[10] K. J. Ooms, K. Campbell, R. R. Tykwinski, R. E. Wasylishen, J. Mater. Chem. 2005, 15, 4318.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXhtVyrtbvL&md5=9a7b737c1fc5fd6d74aa9a81b33d8737CAS |
[11] D. J. Cram, M. E. Tanner, C. B. Knobler, J. Am. Chem. Soc. 1991, 113, 7717.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK3MXmtVOnsb4%3D&md5=6a956e4ed80bdda912dc670a866bf93eCAS |
[12] N. Branda, R. M. Grotzfeld, C. Valdes, J. Rebek, J. Am. Chem. Soc. 1995, 117, 85.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2MXivVert7w%3D&md5=3f94d16f1ee21abdb514f0d3622074e9CAS |
[13] K. Bartik, M. Luhmer, J.-P. Dutasta, A. Collet, J. Reisse, J. Am. Chem. Soc. 1998, 120, 784.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1cXms1Olsw%3D%3D&md5=ea9ba45dbd57817f0b7e2427b35e7361CAS |
[14] J.-H. Baumert, Open Access Surgery 2009, 2, 5.
| Crossref | GoogleScholarGoogle Scholar |
[15] N. P. Franks, R. Dickinson, S. L. M. de Sousa, A. C. Hall, W. R. Lieb, Nature 1998, 396, 324.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1cXnvVamt74%3D&md5=15a0650ad00299169ae189ae86353d40CAS |
[16] H.-H. Luttropp, G. Rydgren, R. Thomasson, O. Werner, Anesthesiology 1991, 75, 896.
| Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DyaK38%2FmtVSrtg%3D%3D&md5=bb85bc58258e997da036e7001da4431bCAS |
[17] A. Dominik, H. J. Roth, K. D. Schierbaum, W. Göpel, Supramolecular Science 1994, 1, 11.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2MXjsFygur4%3D&md5=79599168e648eb057c4f89e8a14e2342CAS |
[18] K.-D. Schierbaum, A. Gerlach, W. Göpel, W. M. Müller, F. Vögtle, A. Dominik, H. J. Roth, Fresen. J. Anal. Chem. 1994, 349, 372.
| 1:CAS:528:DyaK2cXmvVOit74%3D&md5=2693801a4c9fc9462409040bdcfebd29CAS |
[19] W. Göpel, Sens. Actuators B Chem. 1995, 24, 17.
| Crossref | GoogleScholarGoogle Scholar |
[20] F. L. Dickert, R. Sikorski, Mater. Sci. Eng. C 1999, 10, 39.
| Crossref | GoogleScholarGoogle Scholar |
[21] F. L. Dickert, O. Schuster, Microchim. Acta 1995, 119, 55.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2MXosVylu7g%3D&md5=6cbb0983a8b1d1ac8a8147dcc00a56feCAS |
[22] F. L. Dickert, O. Schuster, Adv. Mater. (Deerfield Beach Fla.) 1993, 5, 826.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2cXkslaktL8%3D&md5=9a09eb6baa187401b307ef1357fb8ea1CAS |
[23] O. Hayden, P. Bindeus, F. L. Dickert, Meas. Sci. Technol. 2003, 14, 1876.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXovFKgtL4%3D&md5=eac9f97d7d36b430686a5ce7648f5e47CAS |
[24] J. Dingley, T. M. Ivanova-Stoilova, S. Grundler, T. Wall, Anaesthesia 1999, 54, 335.
| Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DyaK1MzosVOksQ%3D%3D&md5=c38ec82f9deaddfa5552d16eccb7cf7cCAS |
[25] P. R. Boshier, J. R. Cushnir, V. Mistry, A. Knaggs, P. Spanel, D. Smith, G. B. Hanna, Analyst (Lond.) 2011, 136, 3233.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXptlCktLk%3D&md5=b67b9ef823a9d1711cfaa291d5c83551CAS |
[26] R. G. S. Banks, R. J. Henderson, J. M. Pratt, J. Chem. Soc. A 1968, 2886.
| 1:CAS:528:DyaF1MXktlKitg%3D%3D&md5=83329fa9db5c5e9d8eca4b447f1c7738CAS |
[27] R. Deacon, J. Perry, M. Lumb, I. Chanarin, B. Minty, M. J. Halsey, J. F. Nunn, Lancet 1978, 312, 1023.
| Crossref | GoogleScholarGoogle Scholar |
[28] J. A. L. Amess, G. M. Rees, J. F. Burman, D. G. Nancekievill, D. L. Mollin, Lancet 1978, 312, 339.
| Crossref | GoogleScholarGoogle Scholar |
[29] C. D. Gutsche, B. Dhawan, J. A. Levine, K. Hyun No, L. J. Bauer, Tetrahedron 1983, 39, 409.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL3sXhvFOhtbY%3D&md5=65fbef03b03163232f88a6d3db4487cdCAS |