Carbene-Based Lewis Pairs for Hydrogen Activation
Jason W. Runyon A D , Oliver Steinhof A , H. V. Rasika Dias B C , Joseph C. Calabrese B , William J. Marshall B and Anthony J. ArduengoA Department of Chemistry, The University of Alabama, 3068 Shelby Hall, Tuscaloosa, AL 35487-0336, USA.
B Central Research and Development Department, E. I. du Pont de Nemours & Company, Experimental Station E500/1808, Wilmington, DE 19880-0500, USA.
C Current address: Department of Chemistry and Biochemistry, The University of Texas at Arlington, Arlington, TX 76019-0065, USA.
D Corresponding authors. Email: jwrunyon@crimson.ua.edu,aj@ajarduengo.net
Australian Journal of Chemistry 64(8) 1165-1172 https://doi.org/10.1071/CH11246
Submitted: 17 June 2011 Accepted: 22 June 2011 Published: 19 August 2011
Abstract
A series of Lewis acid–base pairs containing sterically demanding carbenes were investigated for hydrogen activation that could potentially be reversible for use in hydrogen storage applications. When electron-rich boranes are employed as electrophiles, the imidazolium cation is reduced to a 2H-imidazoline (aminal). The aminals were synthesized independently by reduction of imidazolium cations with strong reducing agents. Carbocations were also found to act as electrophiles for hydrogen activation. Preliminary results revealed that it is possible to reduce an alcohol to an alkane using hydrogen gas as a reducing agent in these systems. Finally, it was demonstrated that a transition metal can be used as an electrophile to activate hydrogen through heterolytic cleavage.
References
[1] (a) G. C. Welch, R. R. San Juan, J. D. Masuda, D. W. Stephan, Science 2006, 314, 1124.| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28Xht1SmtrjI&md5=e1be50fcb2a8165045bcb2dec90a2381CAS |
(b) G. C. Welch, D. W. Stephan, J. Am. Chem. Soc. 2007, 129, 1880.
| Crossref | GoogleScholarGoogle Scholar |
(c) P. A. Chase, G. C. Welch, T. Jurca, D. W. Stephan, Angew. Chem. 2007, 119, 8196.
| Crossref | GoogleScholarGoogle Scholar |
[2] A. J. Arduengo III, D. A. Dixon, Main Group Element Chemistry for Hydrogen Storage and Avtivation US Department of Energy Center of Excellence for Chemical Hydrogen Storage Report, 24 May 2005 Available online at: http://www.docstoc.com/docs/922349/Main-Group-Element-Chemistry-for-Hydrogen-Storage-and-Activation (accessed 07/07/11)
(b) G. D. Frey, V. Lavallo, B. Donnadieu, W. W. Schöller, G. Bertrand, Science 2007, 316, 439.
| Crossref | GoogleScholarGoogle Scholar |
(c) D. Martin, M. Soleilhavoup, G. Bertrand, Chem. Sci. 2011, 2, 389.
| Crossref | GoogleScholarGoogle Scholar |
[3] (a) D. Holschumacher, T. Bannenberg, C. G. Hrib, P. G. Jones, M. Tamm, Angew. Chem. Int. Ed. 2008, 47, 7428.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXht1Shu7jN&md5=1ee2e29bc0a4b0a756c61d414c20ea08CAS |
(b) E. Theuergarten, D. Schlüns, J. Grunenberg, C. G. Daniliuc, P. G. Jones, M. Tamm, Chem. Commun. 2010, 46, 8561.
| Crossref | GoogleScholarGoogle Scholar |
(c) S. Kronig, E. Theuegarten, D. Holschumacher, T. Bannenberg, C. G. Daniliuc, P. G. Jones, M. Tamm, Inorg. Chem. 2011, 50,
| Crossref | GoogleScholarGoogle Scholar |
[4] (a) A.-L. Schmitt, G. Schnee, R. Welter, S. Dagorne, Chem. Commun. 2010, 46, 2480.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXjs1Gms7w%3D&md5=0fbf6f4ee7b7bd9b08b207cf2757080eCAS |
(b) E. Aldeco-Perez, A. J. Rosenthal, B. Donnadieu, P. Parameswaran, G. Frenking, G. Bertrand, Science 2009, 326, 556.
| Crossref | GoogleScholarGoogle Scholar |
(c) L. N. Appelhans, D. Zuccaccia, A. Kovacevic, A. Chianese, J. R. Miecznikowski, A. Macchioni, E. Clot, O. Eisenstein, R. H. Crabtree, J. Am. Chem. Soc. 2005, 127, 16299.
| Crossref | GoogleScholarGoogle Scholar |
[5] D. Holschumacher, C. Taouss, T. Bannenberg, C. G. Hrib, C. G. Daniliuc, P. G. Jones, M. Tamm, Dalton Trans. 2009, 6927.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXhtVeksrrP&md5=9ff0425efd774c029294c1c0fd7565b5CAS |
[6] O. Steinhof, Investigations in the Field of Carbene-Boron Chemistry. MSc Diploma Thesis, Technische Universität Carolo-Wilhelmina zu Braunschweig and The University of Alabama-Tuscaloosa, 2003.
[7] A. J. Arduengo, S. F. Gamper, M. Tamm, J. C. Calabrese, F. Davidson, H. Craig, J. Am. Chem. Soc. 1995, 117, 572.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2MXivVeqsr0%3D&md5=89066f36c1ece5394bd07a3f5fb300f1CAS |
[8] (a) B. M. Mikhailov, T. K. Baryshnikova, V. G. Kiselev, A. S. Shashkov, Bull. Acad. Sci. USSR, Div. Chem. Sci. 1979, 2361, 2367.
(b) B. M. Mikhailov, V. N. Smirnov, V. A. Kasparov, Bull. Acad. Sci. USSR, Div. Chem. Sci. 1976, 2148, 21.
[9] E. A. Mistryukov, Mendeleev Commun. 2006, 16, 258.
| Crossref | GoogleScholarGoogle Scholar |
[10] (a) P. C. Ford, Acc. Chem. Res. 1981, 14, 31.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL3MXltlCqsA%3D%3D&md5=c7f4f4763aab096186ab7fec162d658aCAS |
(b) B. D. Dombek, J. Am. Chem. Soc. 1980, 102, 6855.
| Crossref | GoogleScholarGoogle Scholar |
[11] (a) F. Feigl, P. Krumholtz, Monatsh. Chem. 1932, 59, 314.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaA38XjtVKhtg%3D%3D&md5=554d2a0ea1c27c532ae45026d8b9b135CAS |
(b) M. Smith, R. Bau, J. Am. Chem. Soc. 1973, 95, 2388.
| Crossref | GoogleScholarGoogle Scholar |
(c) H. W. Walker, P. G. Pearson, P. C. Ford, J. Am. Chem. Soc. 1983, 105, 1179.
| Crossref | GoogleScholarGoogle Scholar |
[12] M. B. Smith, R. Bau, J. Am. Chem. Soc. 1973, 95, 2388.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaE3sXhsVWgs7c%3D&md5=49c8eeda5d31cfe0058217870a770a2fCAS |
[13] K. Öfele, C. Kreiter, Chem. Ber. 1972, 105, 529.
| Crossref | GoogleScholarGoogle Scholar |
[14] G. Huttner, W. Gartzke, Chem. Ber. 1972, 105, 2714.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaE38XltlWrtb4%3D&md5=3af0babbab581faac47ff9474723bda5CAS |
[15] D. D. Perrin, W. L. F. Armarengo, Purification of Laboratory Chemicals 1988 (Pergamon Press: Oxford).