Free Standard AU & NZ Shipping For All Book Orders Over $80!
Register      Login
Australian Journal of Chemistry Australian Journal of Chemistry Society
An international journal for chemical science
RESEARCH FRONT

Enantioselective Synthesis of Arylglycine Derivatives by Asymmetric Addition of Arylboronic Acids to Imines

Yasunori Yamamoto A B , Yoshinori Takahashi A , Kazunori Kurihara A and Norio Miyaura A
+ Author Affiliations
- Author Affiliations

A Division of Chemical Process Engineering, Graduate School of Engineering, Hokkaido University, Sapporo 060-8628, Japan.

B Corresponding author. Email: yasuyama@eng.hokudai.ac.jp

Australian Journal of Chemistry 64(11) 1447-1453 https://doi.org/10.1071/CH11225
Submitted: 2 June 2011  Accepted: 24 August 2011   Published: 16 November 2011

Abstract

Rhodium-catalyzed enantioselective 1,2-additions of arylboronic acids to N-tosyl furanylimine and lithium 5-methyl-2-furanyltriolborate to N-tosyl arylimines giving aryl(2-furanyl)methanamines were developed for enantioselective synthesis of arylglycines by ozonolysis of the furyl ring. A chiral N-linked C2-symmetric bidentate phosphoramidite (N-Me-BIPAM) achieved high enantioselectivities up to 99 % ee. For the direct synthesis of arylglycines, the asymmetric addition of arylboronic acids to ethyl N-p-methoxyphenyl iminoester was carried out at 80°C in dioxane in the presence of Rh(acac)(C2H4)2/(R,R)-N-Me-BIPAM. The reaction gave optically active arylglycines in up to 99 % ee.


References

[1]  R. M. Williams, J. A. Hendrix, Chem. Rev. 1992, 92, 889.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK38XkvFSks7g%3D&md5=fd0fcdbc36cf8c2d15f56a667dcb476eCAS |

[2]  H. Gröger, Chem. Rev. 2003, 103, 2795.
         | Crossref | GoogleScholarGoogle Scholar |

[3]  A. Dömling, Chem. Rev. 2006, 106, 17.
         | Crossref | GoogleScholarGoogle Scholar |

[4]  A. Dömling, I. Ugi, Angew. Chem. Int. Ed. 2000, 39, 3168.
         | Crossref | GoogleScholarGoogle Scholar |

[5]  N. A. Petasis, A. Goodman, I. A. Zavialov, Tetrahedron 1997, 53, 16463.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2sXns1WgsLo%3D&md5=3d811ffa0badc633a6439068f665104bCAS |

[6]  M. Follmann, F. Graul, T. Schäfer, S. Kopec, P. Hamley, Synlett 2005, 1009.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXjsVOru7Y%3D&md5=29f4351500e23d20bdf6e2ada9937cb3CAS |

[7]  S. Oi, M. Moro, H. Fukuhara, T. Kawanishi, Y. Inoue, Tetrahedron Lett. 1999, 40, 9259.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1MXotVyiu74%3D&md5=fe26eba447c077bc190dbf0e8018189fCAS |

[8]  M. Ueda, N. Miyaura, J. Organomet. Chem. 2000, 595, 31.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3cXnslem&md5=1a7cf6990a7b7eca9dcf409493a76102CAS |

[9]  M. Ueda, A. Saito, N. Miyaura, Synlett 2000, 1637.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3cXot1Ght7o%3D&md5=d7ab9d4efa566d265b33360a8fb9a280CAS |

[10]  T. Hayashi, M. Ishigetani, J. Am. Chem. Soc. 2000, 122, 976.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3cXkvVKqtg%3D%3D&md5=583a23c42f474811e696aec66f0f10fbCAS |

[11]  T. Hayashi, M. Ishigetani, Tetrahedron 2001, 57, 2589.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3MXit1agtrc%3D&md5=7866e42da86f48dc5c29f8bb986c872eCAS |

[12]  S. Oi, M. Moro, H. Fukuhara, T. Kawanishi, Y. Inoue, Tetrahedron 2003, 59, 4351.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXkt1Wkur4%3D&md5=8b68e4fb97d9ed9a333f94480670ef3cCAS |

[13]  M. Kuriyama, T. Soeta, X. Hao, Q. Chen, K. Tomioka, J. Am. Chem. Soc. 2004, 126, 8128.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXksl2rtrg%3D&md5=e13b1dddbeec88dc5b5c6dae99a5cd98CAS |

[14]  N. Tokunaga, Y. Otomaru, K. Okamoto, K. Ueyama, R. Shintani, T. Hayashi, J. Am. Chem. Soc. 2004, 126, 13584.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXotVOltbw%3D&md5=12848cb5b4d46e9fd16aff252543fdc0CAS |

[15]  Y. Otomaru, N. Tokunaga, R. Shintani, T. Hayashi, Org. Lett. 2005, 7, 307.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXhtFCiu7bI&md5=95191952aca486aa4e4d4d85d376db91CAS |

[16]  H.-F. Duan, Y.-X. Jia, L.-X. Wang, Q.-L. Zhou, Org. Lett. 2006, 8, 2567.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XksFKksL0%3D&md5=0f39bb13b0a2ad30ab798d367453b273CAS |

[17]  R. B. C. Jagt, P. Y. Toullec, D. Geerdink, J. G. de Vries, B. L. Feringa, A. J. Minnaard, Angew. Chem. Int. Ed. 2006, 45, 2789.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XksFWrs78%3D&md5=33d1bcde5c47bbd1d4e6fd70b058e7bdCAS |

[18]  Z.-Q. Wang, C.-G. Feng, M.-H. Xu, G.-Q. Lin, J. Am. Chem. Soc. 2007, 129, 5336.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXktVyhtbc%3D&md5=a1cbcba57609b460d45fe13f8b483cbeCAS |

[19]  G.-N. Ma, T. Zhang, M. Shi, Org. Lett. 2009, 11, 875.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXkvVOltw%3D%3D&md5=a7610de689a0eb487158bb58c76899eeCAS |

[20]  M. T. Robak, M. A. Herbage, J. A. Ellman, Chem. Rev. 2010, 110, 3600.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXltFChsbs%3D&md5=4ba2e5208ab148227bef765f4c3ff524CAS |

[21]  D. J. Weix, Y. Shi, J. A. Ellman, J. Am. Chem. Soc. 2005, 127, 1092.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXitlGhsA%3D%3D&md5=ce83c5e32fd87133d00132bb704d894fCAS |

[22]  K. Brak, J. A. Ellman, J. Org. Chem. 2010, 75, 3147.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXksF2msb0%3D&md5=4d2923da56bc9c7f12d33eecf3af7142CAS |

[23]  M. A. Beenen, D. J. Weix, J. A. Ellman, J. Am. Chem. Soc. 2006, 128, 6304.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XjslKlurc%3D&md5=f08d5cc1255b52a2c2b721cb07ff33e3CAS |

[24]  H. Dai, X. Lu, Org. Lett. 2007, 9, 3077.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXns1Cgs7o%3D&md5=9043a86600d824ae78a5f1e8b1998b7bCAS |

[25]  H. Dai, M. Yang, X. Lu, Adv. Synth. Catal. 2008, 350, 249.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXlt1Witrc%3D&md5=ee3d01c764dc69e9f55eb8a3b39490f8CAS |

[26]  Y. Yamamoto, K. Kurihara, N. Sugishita, K. Oshita, D.-G. Piao, N. Miyaura, Chem. Lett. 2005, 34, 1224.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXhtVGmu7jM&md5=0f1273dfebece365693c4642519ee66cCAS |

[27]  K. Kurihara, N. Sugishita, K. Oshita, D.-G. Piao, Y. Yamamoto, N. Miyaura, J. Organomet. Chem. 2007, 692, 428.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXivFGh&md5=1eaa56c64a91ab73cc455a002a788896CAS |

[28]  K. Kurihara, Y. Yamamoto, N. Miyaura, Tetrahedron Lett. 2009, 50, 3158.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXmtVent7o%3D&md5=ccb2bf1406f071dc2505d3f5911ae5e0CAS |

[29]  Y. Yamamoto, K. Kurihara, N. Miyaura, Angew. Chem. Int. Ed. 2009, 48, 4414.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXms12isrc%3D&md5=4c4b3a976cbee82d17e9bb46802320daCAS |

[30]  K. Kurihara, Y. Yamamoto, N. Miyaura, Adv. Synth. Catal. 2009, 351, 260.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXhvVWktL8%3D&md5=04c587bcdd7fd6cf38f7131e0deb50c9CAS |

[31]  A. S. Demir, C. Tanyeli, A. Cagir, M. N. Tahir, D. Ulku, Tetrahedron Asymmetry 1998, 9, 1035.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1cXisVSrsbs%3D&md5=a4b58a31d6824b72353c517856bf3709CAS |

[32]  G. Borg, M. Chino, J. A. Ellman, Tetrahedron Lett. 2001, 42, 1433.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3MXhtFymsr4%3D&md5=447a879a8b9c7adc1d029a2faba53089CAS |

[33]  M. Noji, H. Sunahara, K.-i. Tsuchiya, T. Mukai, A. Komasaka, K. Ishii, Synthesis 2008, 3835.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXotlSk&md5=eda65104979bad176cddd8605d894744CAS |

[34]  R. Almansa, D. Guijarro, M. Yus, Tetrahedron Lett. 2009, 50, 4188.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXms1ertL4%3D&md5=c18fb85abd0bacc2dbfd4516dce0b623CAS |

[35]  X.-Q. Yu, T. Shirai, Y. Yamamoto, N. Miyaura, Chem. Asian J. 2011, 6, 932.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXisVaitb4%3D&md5=5867f0acf52ae511a7c28ed78c3d744cCAS |

[36]  Y. Yamamoto, M. Takizawa, X.-Q. Yu, N. Miyaura, Angew. Chem. Int. Ed. 2008, 47, 928.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXhsV2murs%3D&md5=9b2f88b2f6602d52732ceb75914bc8ccCAS |

[37]  Y. Yamamoto, M. Takizawa, X.-Q. Yu, N. Miyaura, Heterocycles 2010, 80, 359.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXls1GrtQ%3D%3D&md5=e1b5ca3a3436c426b3d1f431114d55ebCAS |

[38]  Y. Yamamoto, J. Sugai, M. Takizawa, N. Miyaura, Org. Synth. 2011, 88, 79.

[39]  X.-Q. Yu, Y. Yamamoto, N. Miyaura, Chem. Asian J. 2008, 3, 1517.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXhtFejtb%2FP&md5=c7adec6270faf1129545fcd31a0c980aCAS |

[40]  X.-Q. Yu, Y. Yamamoto, N. Miyaura, Synlett 2009, 994.
         | Crossref | GoogleScholarGoogle Scholar |

[41]  M. Mauksch, S. B. Tsogoeva, I. M. Martynova, S. Wei, Angew. Chem. Int. Ed. 2007, 46, 393.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXotVGjsA%3D%3D&md5=d20b9fdfcfb379668fa85f1a3c6f4dfbCAS |

[42]  A. S. K. Hashmi, S. Schäfer, J. W. Bats, W. Frey, F. Rominger, Eur. J. Org. Chem. 2008, 4891.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXhtlWjsbfP&md5=11dc1b7a3f51b1cb12baef664c93074aCAS |

[43]  G. Li, Y. Liang, J. C. Antilla, J. Am. Chem. Soc. 2007, 129, 5830.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXktFegsL4%3D&md5=e1d8d0b409d39a34c382ff6a7fdbd71cCAS |

[44]  Z.-Y. Xue, Y. Jiang, W.-C. Yuan, X.-M. Zhang, Eur. J. Org. Chem. 2010, 616.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXhtVGmsrg%3D&md5=44a6495253988840d0b392e0c38a5003CAS |