Register      Login
Australian Journal of Chemistry Australian Journal of Chemistry Society
An international journal for chemical science
RESEARCH ARTICLE

RuCl3·3H2O Catalyzed Tandem Reaction of Alkynylbromides with 2-Aminothiophenols in Water: A Convenient Synthesis of 2-Benzoylbenzothiazoles

Xuesen Fan A B , Yan He A , Shenghai Guo A and Xinying Zhang A B
+ Author Affiliations
- Author Affiliations

A School of Chemistry and Environmental Science, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, Henan Key Laboratory for Environmental Pollution Control, Henan Normal University, Xinxiang, Henan 453007, P. R. China.

B Corresponding authors. Email: xuesen.fan@henannu.edu.cn; xinyingzhang@htu.cn

Australian Journal of Chemistry 64(12) 1568-1573 https://doi.org/10.1071/CH11217
Submitted: 28 May 2011  Accepted: 19 July 2011   Published: 17 October 2011

Abstract

RuCl3·3H2O catalyzed tandem reaction of alkynyl bromides with 2-aminothiophenols mediated by water is shown to represent a convenient synthesis of 2-benzoylbenzothiazoles. In addition, the Ru(iii) catalyst could be readily recovered and efficiently reused together with water up to three times.


References

[1]  E. L. Piatnitski Chekler, R. Katoch-Rouse, A. S. Kiselyov, D. Sherman, X. H. Ouyang, K. Kim, Y. Wang, Y. R. Hadari, J. F. Doody, Bioorg. Med. Chem. Lett. 2008, 18, 4344.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXptVeqtbY%3D&md5=5953012987c83b7f048a845986243a44CAS |

[2]  J. C. Gillis, R. N. Brogden, Drugs 1997, 53, 139.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2sXoslGktw%3D%3D&md5=304806cb7a5abefa149e3462fc93452eCAS |

[3]  J. A. Kellen, Curr. Drug Targets 2001, 2, 423.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3MXosl2qtr8%3D&md5=6774e5f13df0ad020d577df3a42b9717CAS |

[4]  G. Tomaselli, HeartDrug 2001, 1, 183.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3MXptlWqtL4%3D&md5=fdded91583a8eaffe02b6fca41cff25bCAS |

[5]  D. L. Boger, H. Miyauchi, M. P. Hedrick, Bioorg. Med. Chem. Lett. 2001, 11, 1517.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3MXksFKltrs%3D&md5=8b06fe4e5ae790f1c4b2ea80f6e7fc67CAS |

[6]  (a) V. Marie-Claude, J. Patricia, B. Marie-Laure, S. Laurence, G. Gérald, Tetrahedron 1997, 53, 5159.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2sXis1Wisrg%3D&md5=bf5c5f4c0770f2ded595e9b91c209901CAS |
      (b) A. R. Katritzky, K. Suzuki, S. K. Singh, H.-Y. He, J. Org. Chem. 2003, 68, 5720.
         | Crossref | GoogleScholarGoogle Scholar |
      (c) N. Chatani, T. Fukuyama, H. Tatamidani, F. Kakiuchi, S. Murai, J. Org. Chem. 2000, 65, 4039.
         | Crossref | GoogleScholarGoogle Scholar |

[7]  (a) R. Chinchilla, C. Nájera, M. Yus, Chem. Rev. 2004, 104, 2667.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXhtVarsrY%3D&md5=335e728210f4f461d955e22ce95efbc8CAS |
      (b) K. M. Marcantonio, L. F. Frey, J. A. Murry, C.-Y. Chen, Tetrahedron Lett. 2002, 43, 8845.
         | Crossref | GoogleScholarGoogle Scholar |
      (c) L. F. Frey, K. M. Marcantonio, C. Y. Chen, D. J. Wallace, J. A. Murry, L. Tan, W. Chen, U. H. Dolling, E. J. J. Grabowski, Tetrahedron 2003, 59, 6363.
         | Crossref | GoogleScholarGoogle Scholar |

[8]  C. A. Kernag, J. M. Bobbitt, D. V. McGrath, Tetrahedron Lett. 1999, 40, 1635.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1MXht1Kjtrk%3D&md5=87960f9268e7927e3c696c19e672d3dbCAS |

[9]  J. Boudreau, M. Doucette, A. N. Ajjou, Tetrahedron Lett. 2006, 47, 1695.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28Xht1ynsbw%3D&md5=1006c5f3910d5182ca46ddd8fc1ec30fCAS |

[10]  R. K. Dieter, Tetrahedron 1999, 55, 4177.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1MXisFKjsr0%3D&md5=880e42b4a0343a7d752d852d9137c8d0CAS |

[11]  (a) A. Schoenberg, R. F. Heck, J. Am. Chem. Soc. 1974, 96, 7761.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaE2MXhsFOgtg%3D%3D&md5=b9478998e68976d3e1824d6f1b632368CAS |
      (b) A. G. Sergeev, A. Spannenberg, M. Beller, J. Am. Chem. Soc. 2008, 130, 15549.
         | Crossref | GoogleScholarGoogle Scholar |
      (c) J. Liu, X. Peng, W. Sun, Y. Zhao, C. Xia, Org. Lett. 2008, 10, 3933.
         | Crossref | GoogleScholarGoogle Scholar |
      (d) Q. Liu, G. Li, J. He, J. Liu, P. Li, A. Lei, Angew. Chem. 2010, 122, 3443.
      (e) Z. Zhang, Y. Liu, M. Gong, X. Zhao, Y. Zhang, J. Wang, Angew. Chem. 2010, 122, 1157.
      (f) L. M. Ambrosini, T. A. Cernak, T. H. Lambert, Synthesis 2010, 870.

[12]  X.-F. Wu, P. Anbarasan, H. Neumann, M. Beller, Angew. Chem. Int. Ed. 2010, 49, 7316.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXhtlClsrvM&md5=4ef52362f19bfb64ebc75326bae161c9CAS |

[13]  (a) M. Lamblin, L. Nassar-Hardy, J.-C. Hierso, E. Fouquet, F.-X. Felpin, Adv. Synth. Catal. 2010, 352, 33.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXhtFanu74%3D&md5=2b86d708ee1bc3f69fcbd8df3f2ddaa4CAS |
      (b) N. Yan, C. Xiao, Y. Kou, Coord. Chem. Rev. 2010, 254, 1179.
         | Crossref | GoogleScholarGoogle Scholar |
      (c) C.-J. Li, Chem. Rev. 2005, 105, 3095.
         | Crossref | GoogleScholarGoogle Scholar |

[14]  (a) X.-P. Fu, L. Liu, D. Wang, Y.-J. Chen, C.-J. Li, Green Chem. 2011, 13, 549.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXivVGit7w%3D&md5=781942c5804ecda6643dcf1b015f2eecCAS |
      (b) K. Wang, X.-H. Bi, S.-X. Xing, P.-Q. Liao, Z.-X. Fang, X.-Y. Meng, Q. Zhang, Q. Liu, Y. Ji, Green Chem. 2011, 13, 562.
         | Crossref | GoogleScholarGoogle Scholar |
      (c) E. Soleimani, M. M. Khodaei, N. Batooie, M. Baghbanzadeh, Green Chem. 2011, 13, 566.
         | Crossref | GoogleScholarGoogle Scholar |
      (d) A. Ohtaka, T. Teratani, R. Fujii, K. Ikeshita, T. Kawashima, K. Tatsumi, O. Shimomura, R. Nomura, J. Org. Chem. 2011, 76, 4052.
         | Crossref | GoogleScholarGoogle Scholar |

[15]  X. Zhang, X. Jia, J. Wang, X. Fan, Green Chem. 2011, 13, 413.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXhs1Gjt7k%3D&md5=3f688e134ef894ee1cb9a8e9db5fb98eCAS |

[16]  X. Fan, X. Wang, Y. He, X. Zhang, J. Wang, Tetrahedron Lett. 2010, 51, 3493.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXntVygsrg%3D&md5=a325baff0a57f89454692dd9e790f7b9CAS |

[17]  (a) A. Sharma, R. S. Schwab, A. L. Braga, T. Barcellos, M. W. Paixão, Tetrahedron Lett. 2008, 49, 5172.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXoslersrY%3D&md5=c9541c9cae95e3eb20efd4ef6215a138CAS |
      (b) A. L. Braga, A. Reckziegel, P. H. Menezes, H. A. Stefani, Tetrahedron Lett. 1993, 34, 393.
         | Crossref | GoogleScholarGoogle Scholar |

[18]  S. Hirano, Y. Fukudome, R. Tanaka, F. Sato, H. Urabe, Tetrahedron 2006, 62, 3896.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XivVCks7w%3D&md5=d61ce289df9bfab26278963a3521aa9bCAS |

[19]  B. H. M. Kuijpers, G. C. T. Dijkmans, S. Groothuys, P. J. L. M. Quaedflieg, R. H. Blaauw, F. L. Van Delft, F. P. J. T. Rutjes, Synlett. 2005, 3059.
         | 1:CAS:528:DC%2BD28XhsFentLk%3D&md5=b7f4b2773adbd7b57d03b21b2164e288CAS |

[20]  (a) N. Matsuyama, K. Hirano, T. Satoh, M. Miura, Org. Lett. 2009, 11, 4156.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXhtVCgt7nP&md5=ff068e51e91890b924c76c033f2fdde3CAS |
      (b) T. Kawano, N. Matsuyama, K. Hirano, T. Satoh, M. Miura, J. Org. Chem. 2010, 75, 1764.
         | Crossref | GoogleScholarGoogle Scholar |

[21]  B. Yao, Z. Liang, T. Niu, Y. Zhang, J. Org. Chem. 2009, 74, 4630.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXmtVGms7g%3D&md5=6b624fbe908bb14d6ab2a375b1aa978dCAS |

[22]  R. Hara, Y. Liu, W.-H. Sun, T. Takahashi, Tetrahedron Lett. 1997, 38, 4103.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2sXktVyjtrg%3D&md5=0e1d51ca0a3964481e3e7aae46870b2aCAS |

[23]  X. Fan, Y. He, Y. Wang, X. Zhang, J. Wang, Tetrahedron Lett. 2011, 52, 899.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXpvVWisg%3D%3D&md5=b694ac34f460535b1c3ccd8f613dff02CAS |

[24]  X. Fan, Y. He, X. Zhang, S. Guo, Y. Wang, Tetrahedron 2011, 67, 6369.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXptlaht7k%3D&md5=19811019409471a6aff09d2395b75210CAS |

[25]  M. Okutani, Y. Mori, J. Org. Chem. 2009, 74, 442.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXhtlOlt7rK&md5=405aef8ee41a4b4f4ad87e99c670dbf1CAS |

[26]  X. Yang, C. Xu, S. Lin, J. Chen, J. Ding, H. Wu, W. Su, J. Braz. Chem. Soc. 2010, 21, 37.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXjtFahsbc%3D&md5=fa861769a0f50a2f57c27109e961fc6aCAS |

[27]  C. Boga, R. Stengel, R. Abdayem, E. D. Vecchio, L. Forlani, P. E. Todesco, J. Org. Chem. 2004, 69, 8903.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXptlygsLw%3D&md5=24969e7a987cade3bf48b710f3f84f3aCAS |