Free Standard AU & NZ Shipping For All Book Orders Over $80!
Register      Login
Australian Journal of Chemistry Australian Journal of Chemistry Society
An international journal for chemical science
RESEARCH FRONT

Temperature Dependent Stress Relaxation in a Model Diels–Alder Network

Richard J. Sheridan A , Brian J. Adzima A and Christopher N. Bowman A B
+ Author Affiliations
- Author Affiliations

A Department of Chemical and Biological Engineering, University of Colorado, Boulder, CO 80309-0424, USA.

B Corresponding author. Email: christopher.bowman@colorado.edu

Australian Journal of Chemistry 64(8) 1094-1099 https://doi.org/10.1071/CH11176
Submitted: 1 May 2011  Accepted: 18 July 2011   Published: 19 August 2011

Abstract

The effect of temperature on the complex shear modulus (G*(ω)) of a model reversible covalent network formed by the Diels–Alder reaction was studied. The gel temperature of 119°C and the functional group conversion at this temperature were determined by the Winter–Chambon criterion. The complex modulus of the cross-linked network was measured from 110°C to 121°C, near the gel temperature, to determine the frequency ranges over which stress relaxation could occur. The crossover time was found to have a strong dependence on temperature (Ea ∼ 260 kJ mol–1); greater than would be expected from a typical thermally-activated retro-Diels–Alder process. Low frequency scaling of G*(ω) over the experimental frequency and temperature range was interpreted to be a result of the existence of a distribution of transient clusters in these thermoreversible covalent gels.


References

[1]  P. G. de Gennes, Scaling Concepts in Polymer Physics 1979 (Cornell University Press: Ithaca, NY).

[2]  R. P. Wool, K. M. O'Connor, J. Appl. Phys. 1981, 52, 5953.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL3MXmtVCrsr0%3D&md5=d5a28bf5a2c2a7598f23f081b3dad07bCAS |

[3]  K. Jud, H. H. Kausch, J. G. Williams, J Mater Sci. 1981, 16, 204.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL3MXhsFOqtrk%3D&md5=d899d88c0b230cb1def03028929133b3CAS |

[4]  M. L. Macht, W. E. Rahm, H. W. Paine, Ind. Eng. Chem. 1941, 33, 563.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaH3MXjvVCisg%3D%3D&md5=c8fbdc527600e62e3404a79c2bf14411CAS |

[5]  O. Olabisi, Handbook of Thermoplastics 1997 (Marcel Dekker: New York, NY).

[6]  H. Winter, M. Mours, Rheology of Polymers Near Liquid-Solid Transitions. Neutron Spin Echo Spectroscopy Viscoelasticity Rheology 1997, pp. 165–234 (Springer-Verlag: Berlin).

[7]  P. Cordier, F. Tournilhac, C. Soulie-Ziakovic, L. Leibler, Nature 2008, 451, 977.
         | 1:CAS:528:DC%2BD1cXit1yns70%3D&md5=3266b8cfb6b0120e6c6d15a6974733f5CAS |

[8]  K. E. Feldman, M. J. Kade, E. W. Meijer, C. J. Hawker, E. J. Kramer, Macromolecules 2009, 42, 9072.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXhtFGls7%2FK&md5=ebcf05d67a5cf99227f939739d982b6aCAS |

[9]  R. Stadler, Transient Networks by Hydrogen Bond Interactions in Polybutadiene-melts. Permanent and Transient Networks 1987, pp. 140–5 (Springer-Verlag: Berlin).

[10]  L. Brunsveld, B. J. B. Folmer, E. W. Meijer, R. P. Sijbesma, Chem. Rev. 2001, 101, 4071.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3MXos1Witbs%3D&md5=2ee8318efcd6f2f1e7734d6fa0c74780CAS |

[11]  B. J. Adzima, H. A. Aguirre, C. J. Kloxin, T. F. Scott, C. N. Bowman, Macromolecules 2008, 41, 9112.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXhtlaktbrF&md5=f6266e85f62c365b63cb92429eeed3c9CAS |

[12]  C. J. Kloxin, T. F. Scott, B. J. Adzima, C. N. Bowman, Macromolecules 2010, 43, 2643.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXitlSjsbY%3D&md5=37cce5b8a805fdebf1ef6c59ed025af5CAS |

[13]  H. Y. Park, C. J. Kloxin, T. F. Scott, C. N. Bowman, Macromolecules 2010, 43, 10188.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXhsVyitLbO&md5=67fa2913995da3bc98b2a4f5d85f2de2CAS |

[14]  C. J. Kloxin, T. F. Scott, C. N. Bowman, Macromolecules 2009, 42, 2551.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXivFOmtbc%3D&md5=1509d5a2e369cab34411c1311963dbc7CAS |

[15]  Y. Amamoto, M. Kikuchi, H. Masunaga, S. Sasaki, H. Otsuka, A. Takahara, Macromolecules 2009, 42, 8733.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXht1eiur3E&md5=7bb2a2c89dfa1d7aa87ef3223baf6fbaCAS |

[16]  X. Chen, M. A. Dam, K. Ono, A. Mal, H. Shen, S. R. Nutt, K. Sheran, F. Wudl, Mater. Sci. 2002, 295, 1698.
         | 1:CAS:528:DC%2BD38Xhslehsrs%3D&md5=3a8633bf5c6607ccfa1397170b32ea12CAS |

[17]  J. M. Craven, Cross-linked Thermally Reversible Polymers Produced from Condensation Polymers with Pendant Furan Groups Cross-linked with Maleimides, US Patent 3435003, 1969.

[18]  M. C. Roberts, A. Mahalingam, M. C. Hanson, P. F. Kiser, Macromolecules 2008, 41, 8832.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXhsVWgtrfF&md5=3d0b9313ff83c8cbfd7efa50d56468a6CAS |

[19]  T. F. Scott, R. B. Draughon, C. N. Bowman, Adv. Mater. (Deerfield Beach Fla.) 2006, 18, 2128.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XptlygsLo%3D&md5=3e7b05c6024861c9fb4d9d2addd15b77CAS |

[20]  Y. Zhang, A. A. Broekhuis, F. Picchioni, Macromolecules 2009, 42, 1906.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXisVCjtbw%3D&md5=208177a27becf6c3fd5b75610b9c967bCAS |

[21]  Y. Chujo, K. Sada, T. Saegusa, Macromolecules 1990, 23, 2636.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK3cXhvF2hu7g%3D&md5=c67ca2877f350eacd6028865c0ca8f62CAS |

[22]  E. Goiti, M. B. Huglin, J. M. Rego, Eur. Polym. J. 2004, 40, 219.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXjslCgtA%3D%3D&md5=ab8636aae4d7658b561316fd54eec8faCAS |

[23]  S. F. Parker, Spectrochim. Acta A Mol. Biomol. Spectrosc. 2006, 63, 544.
         | Crossref | GoogleScholarGoogle Scholar |

[24]  J. P. Swanson, S. Rozvadovsky, J. E. Seppala, M. E. Mackay, R. E. Jensen, P. J. Costanzo, Macromolecules 2010, 43, 6135.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXotFKntrs%3D&md5=bbfe7a5dbb8c3fec979ac566661515a9CAS |

[25]  J. A. Schetz, A. E. Fuhs, Fundamentals of Fluid Mechanics 1999 (Wiley: New York, NY).

[26]  J. D. Ferry, Viscoelastic Properties of Polymers, 3rd edn. 1980 (Wiley: New York, NY).

[27]  M. Rubinstein, A. N. Semenov, Macromolecules 1998, 31, 1386.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1cXovFOksA%3D%3D&md5=f55ba0a5835b9002ac97ebb00757f99fCAS |

[28]  P. J. Flory, Chem. Rev. 1946, 39, 137.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaH28XjsFKksA%3D%3D&md5=4dde65311ec5e330ab2e25e9e6377138CAS |

[29]  D. R. Miller, C. W. Macosko, Macromolecules 1976, 9, 206.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaE28Xhs1Gnu7g%3D&md5=84613727ab9cd70d808f0e61717afc17CAS |

[30]  H. H. Winter, Polym. Eng. Sci. 1987, 27, 1698.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL1cXns1WqsQ%3D%3D&md5=a0d97976b3752f9e2253a2e2e912c400CAS |

[31]  A. N. Semenov, M. Rubinstein, Macromolecules 1998, 31, 1373.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1cXovFOksw%3D%3D&md5=74d6ca9794632f1feab8ab6928e9f382CAS |

[32]  F. Tanaka, Macromolecules 1989, 22, 1988.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL1MXhslChs7Y%3D&md5=6f2e1f58ddc35d95fd51860df855655cCAS |