NHC-Based Self-Assembled Monolayers on Solid Gold Substrates
Tobias Weidner A E , Joe E. Baio A , Alexander Mundstock B , Christoph Große B C , Silvia Karthäuser C , Clemens Bruhn B and Ulrich Siemeling B D EA National ESCA and Surface Analysis Center for Biomedical Problems (NESAC/BIO), Departments of Bioengineering and Chemical Engineering, University of Washington, Seattle, Washington 98195, USA.
B Institute of Chemistry, University of Kassel, 34109 Kassel, Germany.
C Peter Grünberg Institut (PGI-7) and JARA-FIT, Forschungszentrum Jülich, 52425 Jülich, Germany.
D Center for Interdisciplinary Nanostructure Science and Technology (CINSaT), University of Kassel, 34109 Kassel, Germany.
E Corresponding authors. Email: weidner@nb.uw.edu; siemeling@uni-kassel.de
Australian Journal of Chemistry 64(8) 1177-1179 https://doi.org/10.1071/CH11173
Submitted: 29 April 2011 Accepted: 30 June 2011 Published: 19 August 2011
Abstract
Thin films of 1,3-diethylbenzimidazol-2-ylidene (BIEt) were fabricated from THF solution on solid gold substrates and characterised by high-resolution X-ray photoelectron and near-edge X-ray absorption fine structure spectroscopy. The surface-analytical data are in accord with the formation of self-assembled monolayers of BIEt molecules exhibiting an approximately vertical orientation on the substrate. The crystal structure of (BIEt)2 was also determined.
References
[1] A. J. Arduengo, R. L. Harlow, M. Kline, J. Am. Chem. Soc. 1991, 113, 361.| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK3MXmt1Sjuw%3D%3D&md5=36602e5ce523fcf25d5682db3592699dCAS |
[2] (a) (a) N-Heterocyclic Carbenes (Ed. S. Díez-González) 2011 (RSC: Cambridge).
(b) T. Dröge, F. Glorius, Angew. Chem. Int. Ed. 2010, 49, 6940.
| Crossref | GoogleScholarGoogle Scholar |
(c) P. de Frémont, N. Marion, S. P. Nolan, Coord. Chem. Rev. 2009, 253, 862.
| Crossref | GoogleScholarGoogle Scholar |
(d) F. E. Hahn, M. C. Jahnke, Angew. Chem. Int. Ed. 2008, 47, 3122.
| Crossref | GoogleScholarGoogle Scholar |
(e) (e) N-Heterocyclic Carbenes in Transition Metal Catalysis (Top. Organomet. Chem. 2007, 21) (Ed. F. Glorius) 2007 (Springer: Berlin).
(f) D. Enders, O. Niemeier, A. Henseler, Chem. Rev. 2007, 107, 5606.
| Crossref | GoogleScholarGoogle Scholar |
(g) (g) N-Heterocyclic Carbenes in Synthesis (Ed. S. P. Nolan) 2006 (Wiley-VCH: Weinheim).
(h) R. W. Alder, M. E. Blake, L. Chaker, J. N. Harvey, F. Paolini, J. Schütz, Angew. Chem. Int. Ed. 2004, 43, 5896.
| Crossref | GoogleScholarGoogle Scholar |
[3] (a) A. Rit, T. Pape, A. Hepp, F. E. Hahn, Organometallics 2011, 30, 334.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXhs1WqtLnM&md5=6f3915fd8c1a1285c9aa124b4de3e7c0CAS |
(b) A. Rit, T. Pape, F. E. Hahn, J. Am. Chem. Soc. 2010, 132, 4572.
| Crossref | GoogleScholarGoogle Scholar |
(c) A. G. Tennyson, B. Norris, C. W. Bielawski, Macromolecules 2010, 43, 6923.
| Crossref | GoogleScholarGoogle Scholar |
(d) L. Mercs, M. Albrecht, Chem. Soc. Rev. 2010, 39, 1903.
| Crossref | GoogleScholarGoogle Scholar |
(e) A. B. Powell, C. W. Bielawski, A. H. Cowley, Inorg. Chem. 2010, 31, 75.
| Crossref | GoogleScholarGoogle Scholar |
[4] (a) C. Vericat, M. E. Vela, G. Benitez, P. Caro, R. C. Salvarezza, Chem. Soc. Rev. 2010, 39, 1805.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXltFKgtr8%3D&md5=192d316d37c5a2391e91ce5f20f3ebf6CAS |
(b) A. Gölzhäuser, C. Wöll, ChemPhysChem 2010, 11, 3201.
| Crossref | GoogleScholarGoogle Scholar |
(c) A. Ulman, Acc. Chem. Res. 2001, 34, 855.
| Crossref | GoogleScholarGoogle Scholar |
(d) F. Schreiber, Prog. Surf. Sci. 2000, 65, 151.
| Crossref | GoogleScholarGoogle Scholar |
(e) S. Flink, F. C. J. M. van Veggel, D. N. Reinhoudt, Adv. Mater. 2000, 12, 1315.
| Crossref | GoogleScholarGoogle Scholar |
[5] (a) J. D. Scholten, G. Ebeling, J. Dupont, Dalton Trans. 2007, 5554.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXhsVOhtQ%3D%3D&md5=478c2ef5ec656ece998fcf4108394c63CAS |
(b) L. S. Ott, S. Campbell, K. R. Seddon, R. G. Finke, Inorg. Chem. 2007, 46, 10335.
| Crossref | GoogleScholarGoogle Scholar |
(c) L. S. Ott, M. L. Cline, M. Deetlefs, K. R. Seddon, R. G. Finke, J. Am. Chem. Soc. 2005, 127, 5758.
| Crossref | GoogleScholarGoogle Scholar |
[6] E. C. Hurst, K. Wilson, I. J. S. Fairlamb, V. Chechik, N. J. Chem. 2009, 33, 1837.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXhtVOnt7zO&md5=e0db37bdf571d622fff7a6f499c36241CAS |
[7] J. Vignolle, T. D. Tilley, Chem. Commun. (Camb.) 2009, 7230.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXhsVagsr%2FK&md5=07639906244a229634b91d6c71493ebcCAS |
[8] S. Frey, V. Stadler, K. Heister, W. Eck, M. Zharnikov, M. Grunze, B. Zeysing, A. Terfort, Langmuir 2001, 17, 2408.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3MXitFeks78%3D&md5=6375698f973b6e4a871acb292b01b630CAS |
[9] (a) A. Poater, F. Ragone, S. Guidice, C. Costabile, R. Dorta, S. P. Nolan, L. Cavallo, Organometallics 2008, 27, 2679.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXlvVCqs7s%3D&md5=5f089ae0744822a47b7b26ff43fa699eCAS |
(b) F. E. Hahn, L. Wittenbecher, R. Boese, D. Bläser, Chemistry 1999, 5, 1931.
| Crossref | GoogleScholarGoogle Scholar |
[10] (a) F. E. Hahn, T. von Fehren, L. Wittenbecher, R. Fröhlich, Z. Naturforsch. B: Chem. Sci. 2004, 59, 544.
| 1:CAS:528:DC%2BD2cXkvVWqtLw%3D&md5=99298e34622771b785c3e429276597a2CAS |
(b) M. F. Lappert, J. Organomet. Chem. 2005, 690, 5467.
| Crossref | GoogleScholarGoogle Scholar |
(c) M. F. Lappert, J. Organomet. Chem. 1988, 358, 185.
| Crossref | GoogleScholarGoogle Scholar |
(d) D. J. Cardin, B. Çetinkaya, M. F. Lappert, Chem. Rev. 1972, 72, 545.
| Crossref | GoogleScholarGoogle Scholar |
[11] Y. Liu, P. E. Lindner, D. M. Lemal, J. Am. Chem. Soc. 1999, 121, 10626.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1MXmvFCqs7o%3D&md5=d4ec9759bbc71e0913bfecd733423ea1CAS |
[12] F. E. Hahn, L. Wittenbecher, D. Le Van, R. Fröhlich, Angew. Chem. Int. Ed. 2000, 39, 541.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3cXhtlansrg%3D&md5=874eb240ecfc7c4c758c87e03ca0a669CAS |
[13] K. Heister, M. Zharnikov, M. Grunze, L. S. O. Johansson, A. Ulman, Langmuir 2001, 17, 8.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3cXos1ajur0%3D&md5=101eecf7931073a62d0b3430759d410fCAS |
[14] T. Weidner, A. Shaporenko, J. Müller, M. Holtig, A. Terfort, M. Zharnikov, J. Phys. Chem. C 2007, 111, 11627.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXns1Cmsr0%3D&md5=dd9d9090ef64da0f81778e496d485379CAS |
[15] S. Alang Ahmad, A. Hucknall, A. Chilkoti, G. J. Leggett, Langmuir 2010, 26, 9937.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXktVyhtrk%3D&md5=3ae1ed2908264ff9da3a166cd823f69fCAS |
[16] (a) O. Hollóczki, P. Terleczsky, D. Szieberth, G. Mourgas, D. Gudat, L. Nyulászi, J. Am. Chem. Soc. 2011, 133, 780.
| Crossref | GoogleScholarGoogle Scholar |
(b) F. Bonnette, T. Kato, M. Destarac, G. Mignani, F. P. Cossío, A. Baceiredo, Angew. Chem. Int. Ed. 2007, 46, 8632.
| Crossref | GoogleScholarGoogle Scholar |
[17] J. Stöhr, NEXAFS Spectroscopy 1992 (Springer: Berlin).
[18] J. F. Lehmann, S. G. Urquhart, L. E. Ennis, A. P. Hitchcock, K. Hatano, S. Gupta, M. K. Denk, Organometallics 1999, 18, 1862.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1MXitlahu7k%3D&md5=0f8da0392b3f5892f0557308a1257357CAS |
[19] A. P. Hitchcock, L. E. Ennis, J. F. Lehmann, M. K. Denk, J. Electron Spectrosc. Relat. Phenom. 2001, 114, 1037.
| Crossref | GoogleScholarGoogle Scholar |
[20] S. G. Urquhart, A. P. Hitchcock, J. F. Lehmann, M. Denk, Organometallics 1998, 17, 2352.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1cXis12rtrw%3D&md5=3a76e57d9fd4632dc6831c9a1223ef70CAS |
[21] S. Frey, V. Stadler, K. Heister, W. Eck, M. Zharnikov, M. Grunze, B. Zeysing, A. Terfort, Langmuir 2001, 17, 2408.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3MXitFeks78%3D&md5=6375698f973b6e4a871acb292b01b630CAS |