Free Standard AU & NZ Shipping For All Book Orders Over $80!
Register      Login
Australian Journal of Chemistry Australian Journal of Chemistry Society
An international journal for chemical science
RESEARCH FRONT

Dynamics of Volume Expansion of De-Mixing Liquids after Pulsed IR Heating

Jonathan Hobley A C , Sergey Gorelik A , Yutaka Kuge B , Shinji Kajimoto B , Motohiro Kasuya B , Koji Hatanaka B and Hiroshi Fukumura B
+ Author Affiliations
- Author Affiliations

A Institute of Materials Research and Engineering (IMRE) A*STAR (Agency for Science Technology and Research), 3 Research Link, 117602, Singapore.

B Department of Chemistry, Graduate School of Science, Tohoku University, Sendai 980-8578, Japan.

C Corresponding author. Email: hobleyj@imre.a-star.edu.sg

Australian Journal of Chemistry 64(9) 1274-1281 https://doi.org/10.1071/CH11171
Submitted: 29 April 2011  Accepted: 6 July 2011   Published: 16 September 2011

Abstract

Triethylamine (TEA)–water mixtures have a critical-temperature (Tc). Below Tc the mixture exists as one phase and above Tc it exists in two phases. The de-mixed volume is different to the mixed volume. A nanosecond pulsed-laser heated a TEA–water mixture so that it de-mixed. The resulting dynamics of volume expansion were monitored using interferometry. For T-jumps within the one phase region the dynamics of volume change were limited by the speed of sound. However, T-jumps between the one and two phase regions also manifested a slower volume change associated with the de-mixing process. After 150 ns, the volume of the de-mixed TEA–water was consistent with the equilibrium volume change. This suggests that, within 150 ns, the system had split into phase-domains having equilibrium compositions of TEA and water. Subsequently the phase domains would simply merge and grow resulting in no further volume change to reduce surface tension between the phases.


References

[1]  V. L. Ginzburg, L. D. Landau, Zh. Eksp. Teor. Fiz. 1950, 20, 1064.
         | 1:CAS:528:DyaG3MXlvVKgsg%3D%3D&md5=a3361b8604aa471ef8e5117db88ac3d6CAS |

[2]  J. W. Cahn, J. E. Hilliard, J. Chem. Phys. 1958, 28, 258.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaG1cXkvVKrsg%3D%3D&md5=f2cdfc58b0f4a5d2b2c23c706f5315f3CAS |

[3]  P. W. Atkins, Physical Chemistry, 6th Edition 1998, p. 164 (Oxford University Press: Oxford).

[4]  A. Takamizawa, S. Kajimoto, J. Hobley, H. Fukumura, Q. Tran-Cong, Phys. Rev. E 2003, 68, 020501.
         | Crossref | GoogleScholarGoogle Scholar |

[5]  J. Hobley, S. Kajimoto, A. Takamizawa, K. Ohta, Q. Tran-Cong, H. Fukumura, J. Phys. Chem. B 2003, 107, 11411.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXntlyqurY%3D&md5=6f688330046ad34958f086f858682101CAS |

[6]  J. Hobley, S. Kajimoto, A. Takamizawa, H. Fukumura, Phys. Rev. E 2006, 73, 011502.
         | Crossref | GoogleScholarGoogle Scholar |

[7]  J. Hobley, Y. Kuge, S. Gorelik, M. Kasuya, K. Hatanaka, S. Kajimoto, H. Fukumura, Phys. Chem. Chem. Phys. 2008, 10, 5256.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXhtVektLjP&md5=7b007393028b561323047c8ad278c1b6CAS |

[8]  W. O. Wray, T. Aida, R. B. Dyer, Appl. Phys. B 2002, 74, 57.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38XksFCgsw%3D%3D&md5=7e429b9494705ab330d276e5da35d342CAS |

[9]  G. Paltauf, P. E. Dyer, Chem. Rev. 2003, 103, 487.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXotlel&md5=a7ab40a48f2d80e8c87fb44903140e00CAS |

[10]  D. Kim, C. P. Grigoropoulos, Appl. Phys. A 1998, 67, 169.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1cXkvFKgsr4%3D&md5=d1822c0469f6b8041b6797a963afc654CAS |

[11]  H. Furukawa, Adv. Phys. 1985, 34, 703.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL28XktlSiu74%3D&md5=a036e3d6a15368dfebe95d1762d63fd1CAS |

[12]  H. Furukawa, Phys. Rev. A 1985, 31, 1103.
         | Crossref | GoogleScholarGoogle Scholar |

[13]  E. D. Siggia, Phys. Rev. A 1979, 20, 595.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaE1MXls1eiu7g%3D&md5=f273bcf90997c0e869d53ab95785f248CAS |

[14]  D. J. Evans, D. J. Searles, E. Mittag, Phys. Rev. E 2001, 63, 051105.
         | Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DC%2BD38%2FhsFKhtQ%3D%3D&md5=f5fa6be9ee9094beb44a4aa0b37e5f95CAS |

[15]  G. Kopitkovas, T. Lippert, C. David, R. Sulcas, J. Hobley, A. J. Wokaun, J. Gobrecht, Proc. SPIE - Int. Soc. Opt. Eng. 2004, 5662, 515.
         | 1:CAS:528:DC%2BD2cXptVarurk%3D&md5=926638c83f31fd567b1b6e1bc4fafbaeCAS |

[16]  P. Brodard, E. Vauthey, J. Phys. Chem. B 2005, 109, 4668.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXhsVOrurY%3D&md5=f43dc8386e4be1892a10e4eb954751ecCAS |

[17]  T. Ohmori, Y. Kimura, M. Terazima, Phys. Chem. Chem. Phys. 2001, 3, 3994.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3MXmvV2it7s%3D&md5=38934ef913d7aa3f374ff3cb5164330aCAS |

[18]  S. S. Yun, J. Chem. Phys. 1970, 52, 5200.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaE3cXktFyksrw%3D&md5=c65520d455d0c5c0847fb83ae8946459CAS |

[19]  A. C. Flewelling, R. J. DeFonseka, N. Khaleeli, J. Partree, D. T. Jacobs, J. Chem. Phys. 1996, 104, 8048.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK28XjtVOiu7Y%3D&md5=541759a705b3205eac656483e327b7b2CAS |

[20]  J. Thoen, E. Bloemen, W. Van Dael, J. Chem. Phys. 1978, 68, 735.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaE1cXhtFWns7g%3D&md5=100b4665cfa8fa7afd0368c8c990376dCAS |

[21]  I. Itzkan, D. Albagli, M. L. Dark, L. T. Perelman, C. von Rosenberg, M. S. Feld, Proc. Natl. Acad. Sci. USA 1995, 92, 1960.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2MXksVCqs7Y%3D&md5=98d687f5ab9d970190a022e723fed29cCAS |

[22]  J. D. J. Ingle, S. R. Crouch, Spectrochemical Analysis 1988 (Prentice Hall: New Jersey, NJ).

[23]  F. Mallamace, M. Micali, S. Trusso, J. Phys, Condens. Matter 1996, 8, A81.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK28Xktlakt7Y%3D&md5=4cefb25091de5283f667d058dfdd4d73CAS |

[24]  E. L. Cussler, Diffusion Mass Transfer in Fluid Systems, 2nd Edition 1997, p. 172 (Cambridge University Press: Cambridge).

[25]  R. A. Ferrell, Phys.Rev.Lett. 1970, 24, 1169.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaE3cXkt12isbY%3D&md5=83930fa392655b1833025060b6c088efCAS |

[26]  K. Kawasaki, Ann. Phys. 1970, 61, 1.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaE3MXms1Sk&md5=115e4a3d37529a9386d5f1f2f69e5859CAS |

[27]  St. Fusenig, D. Woermann, Ber. Bunsenges. Phys. Chem 1993, 97, 577.
         | 1:CAS:528:DyaK3sXktFKju7w%3D&md5=2e9de2191f97ca0d3c50bf4eb63f39a0CAS |

[28]  G. Zalczer, D. Beysens, J. Chem. Phys. 1990, 92, 6747.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK3cXksVOnsb0%3D&md5=75c71e11b0563088ef8ab1d6ee2fb145CAS |

[29]  R. Behrends, T. Telgmann, U. Kaatze, J. Chem. Phys. 2002, 117, 9828.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38XovVSqsLY%3D&md5=97d5d671a3c83cbfc817decd39a9d956CAS |