Progress Toward Robust Polymer Hydrogels
Sina Naficy A , Hugh R. Brown A B , Joselito M. Razal A , Geoffrey M. Spinks A B C and Philip G. Whitten A CA Intelligent Polymer Research Institute and ARC Centre of Excellence in Electromaterials Science, University of Wollongong, Innovation Campus, Squires Way, Fairy Meadow, NSW, 2519, Australia.
B School of Mechanical, Materials and Mechatronic Engineering, University of Wollongong, Northfields Avenue, Wollongong, NSW, 2522, Australia.
C Corresponding authors. Email: gspinks@uow.edu.au; whitten@uow.edu.au
Australian Journal of Chemistry 64(8) 1007-1025 https://doi.org/10.1071/CH11156
Submitted: 20 April 2011 Accepted: 18 July 2011 Published: 19 August 2011
Abstract
In this review we highlight new developments in tough hydrogel materials in terms of their enhanced mechanical performance and their corresponding toughening mechanisms. These mechanically robust hydrogels have been developed over the past 10 years with many now showing mechanical properties comparable with those of natural tissues. By first reviewing the brittleness of conventional synthetic hydrogels, we introduce each new class of tough hydrogel: homogeneous gels, slip-link gels, double-network gels, nanocomposite gels and gels formed using poly-functional crosslinkers. In each case we provide a description of the fracture process that may be occurring. With the exception of double network gels where the enhanced toughness is quite well understood, these descriptions remain to be confirmed. We also introduce material property charts for conventional and tough synthetic hydrogels to illustrate the wide range of mechanical and swelling properties exhibited by these materials and to highlight links between these properties and the network topology. Finally, we provide some suggestions for further work particularly with regard to some unanswered questions and possible avenues for further enhancement of gel toughness.
References
[1] J. Kopecek, Hydrogels: From soft contact lenses and implants to self-assembled nanomaterials J. Polym. Sci. A Polym. Chem. 2009, 47, 5929.| Hydrogels: From soft contact lenses and implants to self-assembled nanomaterialsCrossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXht1Ohtb7I&md5=7db16f0082c57660408dc263d6905e8cCAS |
[2] N. A. Peppas, P. Bures, W. Leobandung, H. Ichikawa, Hydrogels in pharmaceutical formulations Eur. J. Pharm. Biopharm. 2000, 50, 27.
| Hydrogels in pharmaceutical formulationsCrossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3cXjslyju7Y%3D&md5=3cac8831310f6dad808afafd162a9eeaCAS |
[3] N. A. Peppas, J. Hilt, A. Khademhosseini, R. Langer, Hydrogels in biology and medicine: from molecular principles to bionanotechnology Adv. Mater. 2006, 18, 1345.
| Hydrogels in biology and medicine: from molecular principles to bionanotechnologyCrossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XlvVOgtLY%3D&md5=89d5cb0d55b7e3e8f723570f2fd0de12CAS |
[4] K. Deligkaris, T. S. Tadele, W. Olthuis, A. van den Berg, Hydrogel-based devices for biomedical applications Sens. Actuators B Chem. 2010, 147, 765.
| Hydrogel-based devices for biomedical applicationsCrossref | GoogleScholarGoogle Scholar |
[5] Q.-Z. Chen, A. Bismarck, U. Hansen, S. Junaid, M. Q. Tran, S. E. Harding, N. N. Ali, A. R. Boccaccini, Characterization of a soft elastomer poly(glycerol sebacate) designed to match the mechanical properties of myocardial tissue Biomaterials 2008, 29, 47.
| Characterization of a soft elastomer poly(glycerol sebacate) designed to match the mechanical properties of myocardial tissueCrossref | GoogleScholarGoogle Scholar |
[6] Y. Osada, H. Okuzaki, H. Hori, A polymer gel with electrically driven motility Nature 1992, 355, 242.
| A polymer gel with electrically driven motilityCrossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK38XosFamtQ%3D%3D&md5=d7494cc664708ccda44596eb51f9f586CAS |
[7] Y. Osada, J. P. Gong, Soft and wet materials: polymer gels Adv. Mater. 1998, 10, 827.
| Soft and wet materials: polymer gelsCrossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1cXltlKisrs%3D&md5=b37f466a3ef6ba96d34139eeef154c4cCAS |
[8] K. K. Westbrook, H. J. Qi, Actuator designs using environmentally responsive hydrogels J. Intell. Mater. Syst. Struct. 2008, 19, 597.
| Actuator designs using environmentally responsive hydrogelsCrossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXmvV2msrk%3D&md5=b6f4ba8f06cac6394a8928d9911e2569CAS |
[9] M. K. Shin, G. M. Spinks, S. R. Shin, S. I. Kim, S. J. Kim, Nanocomposite hydrogel with high toughness for bioactuators Adv. Mater. 2009, 21, 1712.
| Nanocomposite hydrogel with high toughness for bioactuatorsCrossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXltFGhsr8%3D&md5=d67151e2522d21c2e69fd00642cf496eCAS |
[10] J. M. Swann, A. J. Ryan, Chemical actuation in responsive hydrogels Polym. Int. 2009, 58, 285.
| Chemical actuation in responsive hydrogelsCrossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXivFehuro%3D&md5=db5d670ad6af117ebe8b2cb421637ae8CAS |
[11] M. L. O’Grady, P.-l. Kuo, K. K. Parker, Optimization of electroactive hydrogel actuators ACS Appl. Mater. Interfaces 2010, 2, 343.
| Optimization of electroactive hydrogel actuatorsCrossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXhsF2gsbnE&md5=93327cca092a567f1308852de3d4e0c1CAS |
[12] D. Zhu, C. Li, X. Zeng, H. Jiang, Tunable-focus microlens arrays on curved surfaces Appl. Phys. Lett. 2010, 96, 081111.
| Tunable-focus microlens arrays on curved surfacesCrossref | GoogleScholarGoogle Scholar |
[13] G. H. Kwon, Y. Y. Choi, J. Y. Park, D. H. Woo, K. B. Lee, J. H. Kim, S.-H. Lee, Electrically-driven hydrogel actuators in microfluidic channels: fabrication, characterization, and biological application Lab Chip 2010, 10, 1604.
| Electrically-driven hydrogel actuators in microfluidic channels: fabrication, characterization, and biological applicationCrossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXmslCqsb0%3D&md5=635cda510de1bf8fcb03b87d78df6888CAS |
[14] D. J. Beebe, J. S. Moore, J. M. Bauer, Q. Yu, R. H. Liu, C. Devadoss, B.-H. Jo, Functional hydrogel structures for autonomous flow control inside microfluidic channels Nature 2000, 404, 588.
| Functional hydrogel structures for autonomous flow control inside microfluidic channelsCrossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3cXis1Gksbg%3D&md5=c95deed7fe5a4563533751a4b4410d07CAS |
[15] K. F. Arndt, D. Kuckling, A. Richter, Application of sensitive hydrogels in flow control Polym. Adv. Technol. 2000, 11, 496.
| Application of sensitive hydrogels in flow controlCrossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3cXosVKnurg%3D&md5=7b470ed532f25ddbf939409a6ca088fdCAS |
[16] N. S. Satarkar, W. Zhang, R. E. Eitel, J. Z. Hilt, Magnetic hydrogel nanocomposites as remote controlled microfluidic valves Lab Chip 2009, 9, 1773.
| Magnetic hydrogel nanocomposites as remote controlled microfluidic valvesCrossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXms12itLw%3D&md5=984191ee05d24fd3f1ba3a6f383b4e54CAS |
[17] K. Y. Lee, D. J. Mooney, Hydrogels for tissue engineering Chem. Rev. 2001, 101, 1869.
| Hydrogels for tissue engineeringCrossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3MXjvFSqu7w%3D&md5=cb99cd598d111e00090ec50a97876f32CAS |
[18] K. T. Nguyen, J. L. West, Photopolymerizable hydrogels for tissue engineering applications Biomaterials 2002, 23, 4307.
| Photopolymerizable hydrogels for tissue engineering applicationsCrossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38XmtVSku7g%3D&md5=2a1b73a4efef0d47e771f4eea920f3b9CAS |
[19] R. Landers, U. Hübner, R. Schmelzeisen, R. Mülhaupt, Rapid prototyping of scaffolds derived from thermoreversible hydrogels and tailored for applications in tissue engineering Biomaterials 2002, 23, 4437.
| Rapid prototyping of scaffolds derived from thermoreversible hydrogels and tailored for applications in tissue engineeringCrossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38XmsVeru74%3D&md5=9f7012b9fcead8b465c3680dbff2cd13CAS |
[20] J. L. Drury, D. J. Mooney, Hydrogels for tissue engineering: scaffold design variables and applications Biomaterials 2003, 24, 4337.
| Hydrogels for tissue engineering: scaffold design variables and applicationsCrossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXmtFansLw%3D&md5=d16b5e70f0f2106dd35b0902626c556dCAS |
[21] M. Lutolf, G. Raeber, A. Zisch, N. Tirelli, J. Hubbell, Cell-responsive synthetic hydrogels Adv. Mater. 2003, 15, 888.
| Cell-responsive synthetic hydrogelsCrossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXkvFCmurg%3D&md5=f97aea9bab19b66408b1b825fa2d0250CAS |
[22] K. Mayumi, K. Ito, Structure and dynamics of polyrotaxane and slide-ring materials Polymer 2010, 51, 959.
| Structure and dynamics of polyrotaxane and slide-ring materialsCrossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXhslWitbw%3D&md5=80f2e6f4f53a26bac2ec729a0b948a8dCAS |
[23] J. P. Gong, Why Are Double Network Hydrogels so Tough? Soft Matter 2010, 6, 2583.
| Why Are Double Network Hydrogels so Tough?Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXntF2gur4%3D&md5=abc2ece9bf65d007f205c6e132f4eb54CAS |
[24] K. Haraguchi, Nanocomposite hydrogels Curr. Opin. Solid State Mater. Sci. 2007, 11, 47.
| Nanocomposite hydrogelsCrossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXpsVOhsL0%3D&md5=7c84d1e8be2c32fe93384307a98b075dCAS |
[25] L. R. G. Treloar, The Physics of Rubber Elasticity (3rd Ed.) 2005 (Clarendon Press: Oxford).
[26] H. Furukawa, K. Horie, R. Nozaki, M. Okada, “Swelling-induced modulation of static and dynamic fluctuations in polyacrylamide gels observed by scanning microscopic light scattering Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 2003, 68, 031406.
| R. Nozaki, M. Okada, “Swelling-induced modulation of static and dynamic fluctuations in polyacrylamide gels observed by scanning microscopic light scatteringCrossref | GoogleScholarGoogle Scholar |
[27] K. Ghosh, D. E. Ingber, Micromechanical control of cell and tissue development: implications for tissue engineering Adv. Drug Deliv. Rev. 2007, 59, 1306.
| Micromechanical control of cell and tissue development: implications for tissue engineeringCrossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXhtlals7nF&md5=cf0f8c305b4e24c78d6822a7b4bd4a2eCAS |
[28] N. A. Peppas, P. Bures, W. Leobandung, H. Ichikawa, Hydrogels in pharmaceutical formulations Eur. J. Pharm. Biopharm. 2000, 50, 27.
| Hydrogels in pharmaceutical formulationsCrossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3cXjslyju7Y%3D&md5=3cac8831310f6dad808afafd162a9eeaCAS |
[29] A. A. Griffith, The phenomena of rupture and flow in solids Philos. Trans. R. Soc. Lond. A 1920, CCXXI, 163.
[30] I. M. Ward, J. Sweeney, An Introduction to the Mechanical Properties of Solid Polymers (2nd Ed.) 2004 (John Wiley & Sons: Chichester).
[31] R. S. Rivlin, A. G. Thomas, Rupture of rubber. I. Characteristic energy for tearing J. Polym. Sci., Polym. Phys. Ed. 1953, 10, 291.
| Rupture of rubber. I. Characteristic energy for tearingCrossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaG3sXlslSnuw%3D%3D&md5=78986e119b89122fca5af1053c8914f7CAS |
[32] ASTM D624 “Standard test for Tear Strength of Conventional Vulcanized Rubber and Thermoplastic Elastomers” American Standard for Testing and Materials 2001.
[33] C. M. Muscat-Fenech, A. G. Atkins, Elastoplastic trouser tear testing of sheet materials Int. J. Fract. 1994, 67, 69.
| Elastoplastic trouser tear testing of sheet materialsCrossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2cXntVKjtb0%3D&md5=dd61167220c0f89b47d0a84ab2bc73cdCAS |
[34] J. T. Bauman, Fatigue, Stress, Strain of Rubber Components: Guide for Design Engineers, Hanser, Munich, 2008.
[35] G. J. Lake, A. G. Thomas, The strength of highly elastic materials Proc. R. Soc. Lond. A 1967, 300, 108.
| The strength of highly elastic materialsCrossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaF1cXktVOmug%3D%3D&md5=496027b73b09f9280912f3b967853b97CAS |
[36] H. R. Brown, A model of the fracture of double network gels Macromolecules 2007, 40, 3815.
| A model of the fracture of double network gelsCrossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXktFCqtr8%3D&md5=c19c5988ce54e1430119046dbae928d8CAS |
[37] J. Zarzycki, Critical stress intensity factors of wet gels J. Non-Cryst. Solids 1988, 100, 359.
| Critical stress intensity factors of wet gelsCrossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL1cXktFantb0%3D&md5=c58114e414e3e498f4eda4e15fb24ea1CAS |
[38] Y. Tanaka, K. Fukao, Y. Miyamoto, Fracture energy of gels Eur. Phys. J. E 2000, 3, 395.
| Fracture energy of gelsCrossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3MXhsVSqtbg%3D&md5=4cef668c6f1f8a26011c8d328e5907a2CAS |
[39] Rubber Technology (3rd Ed.), (Ed. M. Morton) 1987 (Van Nostrand Reinhold Co.: New York).
[40] J. E. Mark, B. Erman, Rubberlike Elasticity. A Molecular Primer, 1988 (Wiley-Interscience: New York).
[41] B. Erman, J. E. Mark, Annu. Rev. Phys. Chem. 1989, 40, 351.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK3cXhs1Sitbk%3D&md5=f3d53acf4cd1a0185a1b0e5ea26fb78bCAS |
[42] T.-P. Hsu, D. S. Ma, C. Cohen, Effects of inhomogeneities in polyacrylamide gels on thermodynamic and transport properties Polymer 1983, 24, 1273.
| Effects of inhomogeneities in polyacrylamide gels on thermodynamic and transport propertiesCrossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL3sXmtFehtLs%3D&md5=d5d2c4d285bbb70a8725f829f7d181c5CAS |
[43] Y. Cohen, O. Ramon, I. J. Kopelman, S. Mizrahi, Characterisation of inhomogeneous polyacrylamide hydrogels J. Polym. Sci., B, Polym. Phys. 1992, 30, 1055.
| Characterisation of inhomogeneous polyacrylamide hydrogelsCrossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK38XkvFWhurs%3D&md5=5988f6721da541640044ec218ac0d904CAS |
[44] H. Furukawa, K. Horie, Swelling induced modulation of static and dynamic fluctuations in polyacrylamide gels observed by scanning microscopic light scattering Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 2003, 68, 031406.
| Swelling induced modulation of static and dynamic fluctuations in polyacrylamide gels observed by scanning microscopic light scatteringCrossref | GoogleScholarGoogle Scholar |
[45] R. E. Webber, C. Creton, H. R. Brown, J. P. Gong, Large strain hysteresis and mullins effect of tough double-network hydrogels Macromolecules 2007, 40, 2919.
| Large strain hysteresis and mullins effect of tough double-network hydrogelsCrossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXjtF2nu78%3D&md5=87508da3fe70cc5cb7bb0d4e680bc51aCAS |
[46] E. Nedkov, S. Tsvetkova, Effect of γ-irradiation on the crystalline structure of ultra high molecular weight poly (ethylene oxide) Radiat. Phys. Chem. 1977 1983, 22, 917.
[47] A. Gestos, P. G. Whitten, G. M. Spinks, G. G. Wallace, Crosslinking neat ultrathin films and nanofibres of pH-responsive poly(acrylic acid) by UV radiation Soft Matter 2010, 6, 1045.
| Crosslinking neat ultrathin films and nanofibres of pH-responsive poly(acrylic acid) by UV radiationCrossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXitlSgtrY%3D&md5=a7813165f24718226cdc3e8a6b186543CAS |
[48] X. Z. Wang, H. L. Wang, H. R. Brown, Jellyfish gel and its hybrid hydrogels with high mechanical strength Soft Matter 2011, 7, 211.
| Jellyfish gel and its hybrid hydrogels with high mechanical strengthCrossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXhsFKisrfE&md5=74bbaf473bcff8b63530cc7cc7cff407CAS |
[49] D. A. Ossipov, J. N. Hilborn, Poly(vinyl alcohol)-based hydrogels formed by click chemistry Macromolecules 2006, 39, 1709.
| Poly(vinyl alcohol)-based hydrogels formed by click chemistryCrossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XhtFOqtrs%3D&md5=37b08012c26a8d1f975d7e8399af29feCAS |
[50] V. Crescenzi, L. Cornelio, C. Di Meo, S. Nardecchia, R. Lamanna, Novel hydrogels via click chemistry: synthesis and potential biomedical applications Biomacromolecules 2007, 8, 1844.
| Novel hydrogels via click chemistry: synthesis and potential biomedical applicationsCrossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXls1Krurs%3D&md5=84b7fd3d10fd503723d588500f34b00cCAS |
[51] B. D. Polizzotti, B. D. Fairbanks, K. S. Anseth, Three-dimensional biochemical patterning of click-based composite hydrogels via thiolene photopolymerization Biomacromolecules 2008, 9, 1084.
| Three-dimensional biochemical patterning of click-based composite hydrogels via thiolene photopolymerizationCrossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXjsVGntbs%3D&md5=0d669f3f107eb6a1a5e4f06386e25580CAS |
[52] M. van Dijk, C. F. van Nostrum, W. E. Hennink, D. T. S. Rijkers, R. M. J. Liskamp, Synthesis and characterization of enzymatically biodegradable PEG and peptide-based hydrogels prepared by click chemistry Biomacromolecules 2010, 11, 1608.
| Synthesis and characterization of enzymatically biodegradable PEG and peptide-based hydrogels prepared by click chemistryCrossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXmsVShtrw%3D&md5=6d26d99472af46709679d0b8f7ec5cafCAS |
[53] L. Q. Xu, F. Yao, G. D. Fu, E. T. Kang, Interpenetrating network hydrogels via simultaneous click chemistry and atom transfer radical polymerization Biomacromolecules 2010, 11, 1810.
| Interpenetrating network hydrogels via simultaneous click chemistry and atom transfer radical polymerizationCrossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXmvVSmurk%3D&md5=bb835408852e36cd8683dfc49aa7df85CAS |
[54] X.-D. Xu, C.-S. Chen, Z.-C. Wang, G.-R. Wang, S.-X. Cheng, X.-Z. Zhang, R.-X. Zhuo, Click chemistry for in situ formation of thermoresponsive P(NIPAAm-co-HEMA)-based hydrogels J. Polym. Sci. A Polym. Chem. 2008, 46, 5263.
| Click chemistry for in situ formation of thermoresponsive P(NIPAAm-co-HEMA)-based hydrogelsCrossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXpt12ltLk%3D&md5=46a4fbc86934bed3787e73a59de48e19CAS |
[55] H.-L. Wei, Z. Yang, Y. Chen, H.-J. Chu, J. Zhu, Z.-C. Li, Characterisation of N-vinyl-2-pyrrolidone-based hydrogels prepared by a Diels-Alder click reaction in water Eur. Polym. J. 2010, 46, 1032.
| Characterisation of N-vinyl-2-pyrrolidone-based hydrogels prepared by a Diels-Alder click reaction in waterCrossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXkvFert7s%3D&md5=181b3e13232e6ef774cad9d478d75850CAS |
[56] M. Malkoch, R. Vestberg, N. Gupta, L. Mespouille, P. Dubois, A. F. Mason, J. L. Hedrick, Q. Liao, C. W. Frank, K. Kingsbury, C. J. Hawker, Synthesis of well-defined hydrogel networks using click chemistry Chem. Commun. 2006, 2774.
| Synthesis of well-defined hydrogel networks using click chemistryCrossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28Xmtl2rt70%3D&md5=be90ad82f20784213b7cb094a590ceb7CAS |
[57] T. Sakai, T. Matsunaga, Y. Yamamoto, C. Ito, R. Yoshida, S. Suzuki, N. Sasaki, M. Shibayama, U.-i. Chung, Design and fabrication of a high-strength hydrogel with ideally homogeneous network structure from tetrahedron-like macromonomers Macromolecules 2008, 41, 5379.
| Design and fabrication of a high-strength hydrogel with ideally homogeneous network structure from tetrahedron-like macromonomersCrossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXns1Squrk%3D&md5=8f42b8c8d0831c39803964334c12241eCAS |
[58] T. Matsunaga, T. Sakai, Y. Akagi, U.-i. Chung, M. Shibayama, Structure characterization of tetra-PEG gel by small-angle neutron scattering Macromolecules 2009, 42, 1344.
| Structure characterization of tetra-PEG gel by small-angle neutron scatteringCrossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXhtlensLo%3D&md5=857a436564a336108d17b8cc51633384CAS |
[59] Y. Akagi, T. Matsunaga, M. Shibayama, U.-i. Chung, T. Sakai, Evaluation of topological defects in tetra-PEG gels Macromolecules 2010, 43, 488.
| Evaluation of topological defects in tetra-PEG gelsCrossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXhsFekt77K&md5=6c7ff1c85b3de614247327182d1eaf26CAS |
[60] T. Matsunaga, T. Sakai, Y. Akagi, U.-i. Chung, M. Shibayama, SANS and SLS studies on tetra-arm PEG gels in as-prepared and swollen states Macromolecules 2009, 42, 6245.
| SANS and SLS studies on tetra-arm PEG gels in as-prepared and swollen statesCrossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXoslWlsr4%3D&md5=bc5f3eec3b2ebb049797d2b01f5dd0caCAS |
[61] Y. Okumura, K. Ito, The polyrotaxane gel: a topological gel by figure-of-eight cross-links Adv. Mater. 2001, 13, 485.
| The polyrotaxane gel: a topological gel by figure-of-eight cross-linksCrossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3MXjtVWktb4%3D&md5=88761b55ef4c22b25a02a619c4d21920CAS |
[62] T. Karino, Y. Okumura, C. Zhao, T. Kataoka, K. Ito, M. Shibayama, SANS studies on deformation mechanism of slide-ring gel Macromolecules 2005, 38, 6161.
| SANS studies on deformation mechanism of slide-ring gelCrossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXlt1Sitbk%3D&md5=7e6d3e3bf9d62435f945c26c913856eeCAS |
[63] T. Koga, F. Tanaka, Elastic properties of polymer networks with sliding junctions Eur. Phys. J. E 2005, 17, 225.
| Elastic properties of polymer networks with sliding junctionsCrossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXosVegsbg%3D&md5=a8de5322d40e3308958dea824734af00CAS |
[64] J. P. Gong, Y. Katsuyama, T. Kurokawa, Y. Osada, Double-network hydrogels with extremely high mechanical strength Adv. Mater. 2003, 15, 1155.
| Double-network hydrogels with extremely high mechanical strengthCrossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXmtFemu7k%3D&md5=1f1d1343a7e496bf7990495eafc1e791CAS |
[65] Y. Kawauchi, Y. Tanaka, H. Furukawa, T. Kurokawa, T. Nakajima, Y. Osada, J. P. Gong, Brittle, ductile, paste-like behaviors and distinct necking of double network gels with enhanced heterogeneity Journal of Physics: Conference Series 2009, 184, 012016.
| Brittle, ductile, paste-like behaviors and distinct necking of double network gels with enhanced heterogeneityCrossref | GoogleScholarGoogle Scholar |
[66] Y.-H. Na, Y. Tanaka, Y. Kawauchi, H. Furukawa, T. Sumiyoshi, J. P. Gong, Y. Osada, Necking phenomenon of double-network gels Macromolecules 2006, 39, 4641.
| Necking phenomenon of double-network gelsCrossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XlslOks7c%3D&md5=71dd8af7ca072af42614cb299955eb3aCAS |
[67] T. Nakajima, H. Furukawa, J. P. Gong, E. K. Lin, W.-l. Wu, A deformation mechanism for double-network hydrogels with enhanced toughness Macromol. Symp. 2010, 291, 122.
| A deformation mechanism for double-network hydrogels with enhanced toughnessCrossref | GoogleScholarGoogle Scholar |
[68] T. Nakajima, H. Furukawa, Y. Tanaka, T. Kurokawa, Y. Osada, J. P. Gong, True chemical structure of double network hydrogels Macromolecules 2009, 42, 2184.
| True chemical structure of double network hydrogelsCrossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXitVOmsb0%3D&md5=c09cce5390e56b67065ca7d743701b97CAS |
[69] K. Okumura, Toughness of double elastic networks Europhys. Lett. 2004, 67, 470.
| Toughness of double elastic networksCrossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXnsFWmtbc%3D&md5=470148fedecbe508c6f7431872917d0aCAS |
[70] Y. Tanaka, A local damage model for anomalous high toughness of double-network gels Europhys. Lett. 2007, 78, 56005.
| A local damage model for anomalous high toughness of double-network gelsCrossref | GoogleScholarGoogle Scholar |
[71] Q. M. Yu, Y. Tanaka, H. Furukawa, T. Kurokawa, J. P. Gong, Direct observation of damage zone around crack tips in double-network gels Macromolecules 2009, 42, 3852.
| Direct observation of damage zone around crack tips in double-network gelsCrossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXmsFGlsL4%3D&md5=9960fb1670080b0e0bf2d3423b22ef24CAS |
[72] Y. Tanaka, R. Kuwabara, Y.-H. Na, T. Kurokawa, J. P. Gong, Y. Osada, Determination of fracture energy of high strength double network hydrogels J. Phys. Chem. B 2005, 109, 11559.
| Determination of fracture energy of high strength double network hydrogelsCrossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXkt1aisL0%3D&md5=2eb89a0a97c3409700c2e2337079976fCAS |
[73] M. A. Llorente, A. L. Andrady, J. E. Mark, Model networks of end-linked polydimethylsiloxane chains. XI. Use of very short network chains to improve ultimate properties J. Polym. Sci., B, Polym. Phys. 1981, 19, 621.
| Model networks of end-linked polydimethylsiloxane chains. XI. Use of very short network chains to improve ultimate propertiesCrossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL3MXhslKnsLs%3D&md5=b8e781d8da3996b8a6082cd80a7c019cCAS |
[74] M.-Y. Tang, A. Letton, J. E. Mark, Colloid Polym. Sci. 1984, 262, 990.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL2MXks1Ohsw%3D%3D&md5=897ee831ff30a07a2d86eb62b49412b3CAS |
[75] K. Haraguchi, Synthesis and properties of soft nanocomposite materials with novel organic / inorganic network structures Polym. J. 2011, 43, 223.
| Synthesis and properties of soft nanocomposite materials with novel organic / inorganic network structuresCrossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXivVClsrY%3D&md5=017ea9bfd6a4d1f52f1e6792ba6e64baCAS |
[76] K. Haraguchi, Y. Xu, G. Li, Molecular characteristics of poly(N-isopropylacrylamide) separated from nanocomposite gels by removal of clay from the polymer/clay network Macromol. Rapid Commun. 2010, 31, 718.
| Molecular characteristics of poly(N-isopropylacrylamide) separated from nanocomposite gels by removal of clay from the polymer/clay networkCrossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXltVyrs74%3D&md5=5bcd01ce4618711be3feca095a5c3f52CAS |
[77] K. Haraguchi, H. J. Li, K. Matsuda, T. Takehisa, E. Elliott, Mechanism of forming organic/inorganic network structures during in-situ free-radical polymerization in PNIPA–clay nanocomposite hydrogels Macromolecules 2005, 38, 3482.
| Mechanism of forming organic/inorganic network structures during in-situ free-radical polymerization in PNIPA–clay nanocomposite hydrogelsCrossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXisFOnu7k%3D&md5=52c1dd690949427ab5f14d4a8ee7c6a0CAS |
[78] K. Haraguchi, T. Takehisa, Nanocomposite hydrogels: a unique organic–inorganic network structure with extraordinary mechanical, optical, and swelling/de-swelling properties Adv. Mater. 2002, 14, 1120.
| Nanocomposite hydrogels: a unique organic–inorganic network structure with extraordinary mechanical, optical, and swelling/de-swelling propertiesCrossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38XmsFyrurw%3D&md5=f201cf2f09cf142c288126dc62e8c52cCAS |
[79] K. Haraguchi, T. Takehisa, S. Fan, Effects of clay content on the properties of nanocomposite hydrogels composed of poly(N-isopropylacrylamide) and clay Macromolecules 2002, 35, 10162.
| Effects of clay content on the properties of nanocomposite hydrogels composed of poly(N-isopropylacrylamide) and clayCrossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38XptFOksrY%3D&md5=2e1500e2d29f587ee5b1d1ea17685b6fCAS |
[80] K. Haraguchi, H.-J. Li, Mechanical properties and structure of polymer–clay nanocomposite gels with high clay content Macromolecules 2006, 39, 1898.
| Mechanical properties and structure of polymer–clay nanocomposite gels with high clay contentCrossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XpvFClsQ%3D%3D&md5=1340dcd8a7c5b8d4e6b72e1ec5256953CAS |
[81] K. Haraguchi, H.-J. Li, Mechanical properties of nanocomposite hydrogels consisting of organic/inorganic networks and the effects of clay modification thereto J. Network Polym. Jpn. 2004, 25, 2.
| 1:CAS:528:DC%2BD2cXivVait7g%3D&md5=4e5924f2817b769e21fc34867ca9027cCAS |
[82] W.-L. Lin, W. Fan, A. Marcellan, D. Hourdet, C. Creton, Large strain and fracture properties of poly(dimethylacrylamide) / silica hybrid hydrogels Macromolecules 2010, 43, 2554.
| Large strain and fracture properties of poly(dimethylacrylamide) / silica hybrid hydrogelsCrossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXhsFams70%3D&md5=0cd1484027c6ca867b6d1eeac82aae7eCAS |
[83] S. Abdurrahmanoglu, O. Okay, Rheological behaviour of polymer-clay nanocomposite hydrogels: Effect of nanoscale interactions J. Appl. Polym. Sci. 2010, 116, 2328.
| Rheological behaviour of polymer-clay nanocomposite hydrogels: Effect of nanoscale interactionsCrossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXitl2itrs%3D&md5=65528f1186c00da549670b981b7dd936CAS |
[84] M. Zhu, Y. Liu, B. Sun, W. Zhang, X. Liu, H. Yu, Y. Zhang, D. Kuckling, H.-J. P. Adler, A novel highly resilient nanocomposite hydrogel with low hysteresis and ultrahigh elongation Macromol. Rapid Commun. 2006, 27, 1023.
| A novel highly resilient nanocomposite hydrogel with low hysteresis and ultrahigh elongationCrossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XnslCguro%3D&md5=63f410a900badbd0db3ca4b9d7d93074CAS |
[85] Y. Liu, M. Zhu, X. Liu, Y. M. Jiang, Y. Ma, Z. Y. Qin, D. Kuckling, H.-J. P. Adler, Mechanical properties and phase transition of high clay content clay/poly(N-isopropylacrylamide) nanocomposite hydrogel Macromol. Symp. 2007, 254, 353.
| Mechanical properties and phase transition of high clay content clay/poly(N-isopropylacrylamide) nanocomposite hydrogelCrossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXhtValurbO&md5=a8e8888f05043afc7bd50fa2002f057aCAS |
[86] X. Hu, L. Xiong, T. Wang, Z. Lin, X. Liu, Z. Tong, Synthesis and dual response of ionic nanocomposite hydrogels with ultrahigh tensibility and transparence Polymer 2009, 50, 1933.
| Synthesis and dual response of ionic nanocomposite hydrogels with ultrahigh tensibility and transparenceCrossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXjsl2itrs%3D&md5=5980c52c84577ab5de591dde009c8133CAS |
[87] T. Nishida, H. Endo, N. Osaka, H.-J. Li, K. Haraguchi, M. Shibayama, Deformation mechanism of nanocomposite gels studied by contrast variation small-angle neutron scattering Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 2009, 80, 030801 (R).(R)
| Deformation mechanism of nanocomposite gels studied by contrast variation small-angle neutron scatteringCrossref | GoogleScholarGoogle Scholar |
[88] T. Huang, H. Xu, K. Jiao, L. Zhu, H. Brown, H. Wang, A novel hydrogel with high mechanical strength: a macromolecular microsphere composite hydrogel Adv. Mater. 2007, 19, 1622.
| A novel hydrogel with high mechanical strength: a macromolecular microsphere composite hydrogelCrossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXnsVagsbw%3D&md5=6fe8a40e04fcdf4af383988e8922c446CAS |
[89] X. Qin, F. Zhao, Y. Liu, H. Wang, S. Feng, High mechanical strength hydrogels preparation using hydrophilic reactive microgels as crosslinking agents Colloid Polym. Sci. 2009, 287, 621.
| High mechanical strength hydrogels preparation using hydrophilic reactive microgels as crosslinking agentsCrossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXisFOlsrk%3D&md5=a570fd120e0fc49346256d054c5311c9CAS |
[90] Y. Wu, Z. Zhou, Q. Fan, L. Chen, M. Zhu, Facile in-situ fabrication of novel organic nanoparticle hydrogels with excellent mechanical properties J. Mater. Chem. 2009, 19, 7340.
| Facile in-situ fabrication of novel organic nanoparticle hydrogels with excellent mechanical propertiesCrossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXht1SqsLzF&md5=c7e4c2947509b259914303056976aba7CAS |
[91] K. Xu, Y. Tan, Q. Chen, H. An, W. Li, L. Dong, P. Wang, A novel multi-responsive polyampholyte composite hydrogel with excellent mechanical strength and rapid shrinking rate J. Colloid Interface Sci. 2010, 345, 360.
| A novel multi-responsive polyampholyte composite hydrogel with excellent mechanical strength and rapid shrinking rateCrossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXkt1Orsrg%3D&md5=0658866af49635745091b155b9745ee8CAS |
[92] L.-W. Xia, X.-J. Ju, J.-J. Liu, R. Xie, L.-Y. Chu, Responsive hydrogels with poly(N-isopropylacrylamide-co-acrylic acid) colloidal spheres as building blocks J. Colloid Interface Sci. 2010, 349, 106.
| Responsive hydrogels with poly(N-isopropylacrylamide-co-acrylic acid) colloidal spheres as building blocksCrossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXotlWls7w%3D&md5=690206826c3c9b72c591932bf155a6d0CAS |
[93] G. Dubois, W. Volksen, T. Magbitang, R. Miller, D. Gage, R. Dauskardt, Molecular network reinforcement of sol–gel glasses Adv. Mater. 2007, 19, 3989.
| Molecular network reinforcement of sol–gel glassesCrossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXhsVaht77J&md5=d272614099bb325763f74407ac86c9c1CAS |
[94] R. J. Crawford, Plastics Engineering, (3rd Ed.) 2004, (Elsevier: Oxford).
[95] K. Friedrich, U. A. Karsch, Failure processes in particulate filled polypropylene Fibre Science and Technology 1983, 18, 37.
| Failure processes in particulate filled polypropyleneCrossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL3sXlsV2ltw%3D%3D&md5=26e9476749da374105e60ca03b6902a4CAS |
[96] A. C. Meeks, Fracture and mechanical properties of epoxy resins and rubber-modified epoxy resins Polymer 1974, 15, 675.
| Fracture and mechanical properties of epoxy resins and rubber-modified epoxy resinsCrossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaE2MXpvFSnsA%3D%3D&md5=79ab0867f6cc9add10dd32d8d7f76c64CAS |
[97] R. J. M. Borggreve, R. J. Gaymans, J. Schuijer, J. F. I. Housz, Brittle-tough transition in nylon-rubber blends: effect of rubber concentration and particle size Polymer 1987, 28, 1489.
| Brittle-tough transition in nylon-rubber blends: effect of rubber concentration and particle sizeCrossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL2sXlsFGhurw%3D&md5=b559ab4501eba1b63fb04534f2c0e9e8CAS |
[98] D. S. Parker, H. J. Sue, J. Huang, A. F. Yee, Toughening mechanisms in core-shell rubber modified polycarbonate Polymer 1990, 31, 2267.
| Toughening mechanisms in core-shell rubber modified polycarbonateCrossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK3MXksVSquw%3D%3D&md5=d335767ff3cf4bb361ca45cb3a1b55d1CAS |
[99] M. Ashby, H. Shercliff, D. Cebon, Materials Engineering, Science, Processing and Design (2nd Ed.), 2010 (Elsevier: Oxford).
[100] T. Baumberger, O. Ronsin, Cooperative effect of stress and ion displacement on the dynamics of cross-link unzipping and rupture of alginate gels Biomacromolecules 2010, 11, 1571.
| Cooperative effect of stress and ion displacement on the dynamics of cross-link unzipping and rupture of alginate gelsCrossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXmsVCqsL0%3D&md5=e4860f4260ee7c9705f833558ee0a328CAS |
[101] T. Baumberger, C. Caroli, D. Martina, Fracture of a biopolymer gel as a viscoplastic disentanglement process Eur. Phys. J. E 2006, 21, 81.
| Fracture of a biopolymer gel as a viscoplastic disentanglement processCrossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXisV2iug%3D%3D&md5=c73e5137bdf4a29f778a6525ac8b9073CAS |
[102] J. Zhang, C. R. Daubert, E. A. Foegeding, Characterization of polyacrylamide gels as an elastic model for food gels Rheologica Acta 2005, 44, 622.
| Characterization of polyacrylamide gels as an elastic model for food gelsCrossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXmtlOgu7o%3D&md5=81220f82d6fd01712ae4b9960f7b8d65CAS |
[103] M. Huang, H. Furukawa, Y. Tanaka, T. Nakajima, Y. Osada, J. P. Gong, Importance of entanglement between first and second components in high-strength double network gels Macromolecules 2007, 40, 6658.
| Importance of entanglement between first and second components in high-strength double network gelsCrossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXosVCksbY%3D&md5=06ff5559cc7c05227b697a2b1688698fCAS |
[104] H. Tsukeshiba, M. Huang, Y.-H. Na, T. Kurokawa, R. Kuwabara, Y. Tanaka, H. Furukawa, Y. Osada, J. P. Gong, Effect of polymer entanglement on the toughening of double network hydrogels J. Phys. Chem. B 2005, 109, 16304.
| Effect of polymer entanglement on the toughening of double network hydrogelsCrossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXntVyhtLk%3D&md5=d4dfd28a3cc8e37c6a932bf83970d456CAS |
[105] D. Myung, W. Koh, J. Ko, Y. Hu, M. Carrasco, J. Noolandi, C. N. Ta, C. W. Frank, Biomimetic strain hardening in interpenetrating polymer network hydrogels Polymer 2007, 48, 5376.
| Biomimetic strain hardening in interpenetrating polymer network hydrogelsCrossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXptlyqurY%3D&md5=1e26db96f97716dafbdf5def71f7baf6CAS |
[106] A. Nakayama, A. Kakugo, J. P. Gong, Y. Osada, M. Takai, T. Erata, S. Kawano, High mechanical strength double-network hydrogel with bacterial cellulose Adv. Funct. Mater. 2004, 14, 1124.
| High mechanical strength double-network hydrogel with bacterial celluloseCrossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXhtVyiu77L&md5=a0f25d9be3d98ccef97aec1ed1b052e6CAS |
[107] I. Tranoudis, N. Efron, Tensile properties of soft contact lens materials Cont. Lens Anterior Eye 2004, 27, 177.
| Tensile properties of soft contact lens materialsCrossref | GoogleScholarGoogle Scholar |
[108] B. D. Johnson, D. J. Beebe, W. C. Crone, Effects of swelling on the mechanical properties of a pH-sensitive hydrogel for use in microfluidic devices Mater. Sci. Eng. C 2004, 24, 575.
| Effects of swelling on the mechanical properties of a pH-sensitive hydrogel for use in microfluidic devicesCrossref | GoogleScholarGoogle Scholar |
[109] X. Zhang, X. Guo, S. Yang, S. Tan, X. Li, H. Dai, X. Yu, X. Zhang, N. Weng, B. Jian, J. Xu, Double-network hydrogel with high mechanical strength prepared from two biocompatible polymers J. Appl. Polym. Sci. 2009, 112, 3063.
| Double-network hydrogel with high mechanical strength prepared from two biocompatible polymersCrossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXks1Wgt7k%3D&md5=86942cbebfee5b9f501c3770167357adCAS |
[110] Y. Lee, D. N. Kim, D. Choi, W. Lee, J. Park, W.-G. Koh, Preparation of interpenetrating polymer network composed of poly(ethylene glycol) and poly(acrylamide) hydrogels as a support of enzyme immobilization Polym. Adv. Technol. 2008, 19, 852.
| Preparation of interpenetrating polymer network composed of poly(ethylene glycol) and poly(acrylamide) hydrogels as a support of enzyme immobilizationCrossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXpsVWrt7s%3D&md5=46da7c3c34d1290b737d0888c07f8563CAS |
[111] Y. Liu, M. Zhu, X. Liu, W. Zhang, B. Sun, Y. Chen, H.-J. P. Adler, High clay content nanocomposite hydrogels with surprising mechanical strength and interesting deswelling kinetics Polymer 2006, 47, 1.
| High clay content nanocomposite hydrogels with surprising mechanical strength and interesting deswelling kineticsCrossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXhtlCntr3F&md5=c60a3d14bfe649c1a3e838d0ff23ab89CAS |
[112] K. Haraguchi, R. Farnworth, A. Ohbayashi, T. Takehisa, Compositional effects on mechanical properties of nanocomposite hydrogels composed of poly(N,N-dimethylacrylamide) and clay Macromolecules 2003, 36, 5732.
| Compositional effects on mechanical properties of nanocomposite hydrogels composed of poly(N,N-dimethylacrylamide) and clayCrossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXkvFOlsLs%3D&md5=53cf1a396709a5deba10493f17b6ef5fCAS |
[113] L. Xiong, M. Zhu, X. Hu, X. Liu, Z. Tong, Ultrahigh deformability and transparency of Hectorite clay nanocomposite hydrogels with nimble pH response Macromolecules 2009, 42, 3811.
| Ultrahigh deformability and transparency of Hectorite clay nanocomposite hydrogels with nimble pH responseCrossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXktF2gsbY%3D&md5=69355a06afeda2f37e33f04e24ab9787CAS |
[114] M. Zhu, L. Xiong, T. Wang, X. Liu, C. Wang, Z. Tong, High tensibility and pH-responsive swelling of nanocomposite hydrogels containing the positively chargeable 2-(dimethylamino)ethyl methacrylate monomer React. Funct. Polym. 2010, 70, 267.
| High tensibility and pH-responsive swelling of nanocomposite hydrogels containing the positively chargeable 2-(dimethylamino)ethyl methacrylate monomerCrossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXjvFKhtL8%3D&md5=fc1e09321b3f4825bb492ddf6c21b88aCAS |
[115] J. Ma, L. Zhang, B. Fan, Y. Xu, B. Liang, A novel sodium carboxymethylcellulose/poly(N-isopropylacrylamide)/Clay semi-IPN nanocomposite hydrogel with improved response rate and mechanical properties J. Polym. Sci., B, Polym. Phys. 2008, 46, 1546.
| A novel sodium carboxymethylcellulose/poly(N-isopropylacrylamide)/Clay semi-IPN nanocomposite hydrogel with improved response rate and mechanical propertiesCrossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXpt12lsrw%3D&md5=d2c255b9bcc8a4768ac27a43104da9dfCAS |
[116] X. Hu, T. Wang, L. Xiong, C. Wang, X. Liu, Z. Tong, Preferential adsorption of poly(ethylene glycol) on Hectorite clay and effects on poly(N-isopropylacrylamide)/Hectorite nanocomposite hydrogels Langmuir 2010, 26, 4233.
| Preferential adsorption of poly(ethylene glycol) on Hectorite clay and effects on poly(N-isopropylacrylamide)/Hectorite nanocomposite hydrogelsCrossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXhsFaks7rN&md5=013f782aa62fae7fcdc6fb4990422b04CAS |
[117] L. Song, M. Zhu, Y. Chen, K. Haraguchi, Temperature- and pH-sensitive nanocomposite gels with semi-interpenetrating organic/inorganic networks Macromol. Chem. Phys. 2008, 209, 1564.
| Temperature- and pH-sensitive nanocomposite gels with semi-interpenetrating organic/inorganic networksCrossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXhtVehu7rI&md5=68efc39f1f4d62da30e3a1179e33b936CAS |
[118] M. Fukasawa, T. Sakai, U.-i. Chung, K. Haraguchi, Synthesis and mechanical properties of a nanocomposite gel consisting of a tetra-PEG/clay network Macromolecules 2010, 43, 4370.
| Synthesis and mechanical properties of a nanocomposite gel consisting of a tetra-PEG/clay networkCrossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXkslKgsL8%3D&md5=b33f92d21eae3f7b640c3b39c3f5613bCAS |
[119] L. Xiong, X. Hu, X. Liu, Z. Tong, Network chain density and relaxation of in situ synthesized polyacrylamide/Hectorite clay nanocomposite hydrogels with ultrahigh tensibility Polymer 2008, 49, 5064.
| Network chain density and relaxation of in situ synthesized polyacrylamide/Hectorite clay nanocomposite hydrogels with ultrahigh tensibilityCrossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXht12rt7rE&md5=69a7d4132f783ca02cbe839799477c5dCAS |
[120] J. Djonlagić, Z. S. Petrović, Semi-interpenetrating polymer networks composed of poly(N-isopropyl acrylamide) and polyacrylamide hydrogels J. Polym. Sci., B, Polym. Phys. 2004, 42, 3987.
| Semi-interpenetrating polymer networks composed of poly(N-isopropyl acrylamide) and polyacrylamide hydrogelsCrossref | GoogleScholarGoogle Scholar |
[121] D. Myung, D. Waters, M. Wiseman, P. E. Duhamel, J. Noolandi, C. N. Ta, C. W. Frank, Progress in the development of interpenetrating polymer network hydrogels Polym. Adv. Technol. 2008, 19, 647.
| Progress in the development of interpenetrating polymer network hydrogelsCrossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXotFyrsrk%3D&md5=081bbe7c0550fccf5c7ece0239431dc9CAS |
[122] P. D. Topham, J. R. Howse, C. J. Crook, S. P. Armes, R. A. L. Jones, A. J. Ryan, Antagonistic triblock polymer gels powered by pH oscillations Macromolecules 2007, 40, 4393.
| Antagonistic triblock polymer gels powered by pH oscillationsCrossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXlvFSns7w%3D&md5=23fcbb34eafc930f108a1712e932eec5CAS |
[123] G. Miquelard-Garnier, D. Hourdet, C. Creton, Large strain behavior of nanostructured polyelectrolyte hydrogels Polymer 2009, 50, 481.
| Large strain behavior of nanostructured polyelectrolyte hydrogelsCrossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXksFOjuw%3D%3D&md5=dd548888916292795211a1925053db7cCAS |