Expanding the Scope of Molecular Self-organization Studies through Temperature Control at the Solution/Solid Interface
Jennifer M. MacLeod A and Federico Rosei A BA Université du Québec, Institut national de la recherche scientifique, Énergie, Matériaux et Télécommunications 1650 Boulevard Lionel-Boulet, Varennes, Québec J3X 1S2, Canada.
B Corresponding author. Email: rosei@emt.inrs.ca
Professor Federico Rosei holds the Canada Research Chair in Nanostructured Organic and Inorganic Materials, Institut National de la Recherche Scientifique, Énergie, Matériaux et Télécommunications, Université du Québec, Varennes (QC) Canada. He received M.Sc. and Ph.D. degrees from the University of Rome ‘La Sapienza’ in 1996 and 2001, respectively. Dr. Rosei’s research interests focus on the properties of nanostructured materials, and on how to control their size, shape, composition, stability, and positioning when grown on suitable substrates. He has extensive experience in fabricating, processing, and characterizing inorganic, organic, and biocompatible nanomaterials. He has published 110 articles in prestigious international journals (including Science, Advanced Materials, Angewandte Chemie Int. Ed., Journal of the American Chemical Society, Nanoletters, Small, Physical Review Letters, Applied Physics Letters, Physical Review B, etc.), has been invited to speak at over 120 international conferences and has given over 130 seminars and colloquia in 33 countries on all inhabited continents. His publications have been cited over 2000 times and his H index is 24. He has received several awards, including the FW Bessel Award from the Alexander von Humboldt Foundation, the FQRNT Strategic Professorship (2002–07), the Tan Chin Tuan visiting Fellowship (NTU 2008), the Senior Gledden Visiting Fellowship (UWA 2009), Professor at Large at UWA (2010–12), a Marie Curie Post-Doctoral Fellowship from the European Union (2001) and a Canada Research Chair since 2003 (renewed in 2008 for a second 5-year term). He is Member of the Sigma Xi Society, Fellow of the Institute of Nanotechnology and of the Institute of Physics. |
Australian Journal of Chemistry 64(9) 1299-1300 https://doi.org/10.1071/CH11151
Submitted: 19 April 2011 Accepted: 8 June 2011 Published: 16 September 2011
References
[1] P. Samori, X. M. Yin, N. Tchebotareva, Z. H. Wang, T. Pakula, F. Jackel, M. D. Watson, A. Venturini, K. Müllen, J. P. Rabe, J. Am. Chem. Soc. 2004, 126, 3567.| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXhs1Cmt7s%3D&md5=0bf0d48d098744787058a9d1f62350fcCAS |
[2] L. Wang, Q. Chen, G. B. Pan, L. J. Wan, S. M. Zhang, X. W. Zhan, B. H. Northrop, P. J. Stang, J. Am. Chem. Soc. 2008, 130, 13433.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXhtFSjsbnI&md5=4626660d0afc058b4362ee54654c1001CAS |
[3] J. M. MacLeod, O. Ivasenko, C. Y. Fu, T. Taerum, F. Rosei, D. F. Perepichka, J. Am. Chem. Soc. 2009, 131, 16844.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXhtlGhtbbM&md5=54a309338b931a92e3d71913b91b43d3CAS |
[4] A. Gesquiere, M. M. S. Abdel-Mottaleb, S. De Feyter, F. C. De Schryver, F. Schoonbeek, J. van Esch, R. M. Kellogg, B. L. Feringa, A. Calderone, R. Lazzaroni, J. L. Brédas, Langmuir 2000, 16, 10385.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3cXosVamsr0%3D&md5=1ead8a8b59b57eca5bcb9c05042bece9CAS |
[5] M. D. Watson, F. Jackel, N. Severin, J. P. Rabe, K. Mullen, J. Am. Chem. Soc. 2004, 126, 1402.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXksFCmtA%3D%3D&md5=767defd3a81fb33a2620bf1e6ee301d0CAS |
[6] D. B. Amabilino, S. De Feyter, R. Lazzaroni, E. Gomar-Nadal, J. Veciana, C. Rovira, M. M. Abdel-Mottaleb, W. Mamdouh, P. Iavicoli, K. Psychogyiopoulou, M. Linares, A. Minoia, H. Xu, D. B. Amabilino, S. De Feyter, R. Lazzaroni, E. Gomar-Nadal, J. Veciana, C. Rovira, M. M. Abdel-Mottaleb, W. Mamdouh, P. Iavicoli, K. Psychogyiopoulou, M. Linares, A. Minoia, H. Xu, J. Phys.: Condens. Matter 2008, 20, 184003.
| Crossref | GoogleScholarGoogle Scholar |
[7] O. Ivasenko, J. M. MacLeod, K. Y. Chernichenko, E. S. Balenkova, R. V. Shpanchenko, V. G. Nenajdenko, F. Rosei, D. F. Perepichka, Chem. Commun. 2009, 1192.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXisVChsL0%3D&md5=2cf1e5a81bde95aaaf389ed6fc5050b7CAS |
[8] W. Mamdouh, R. E. A. Kelly, M. D. Dong, M. F. Jacobsen, E. E. Ferapontova, L. N. Kantorovich, K. V. Gothelf, F. Besenbacher, J. Phys. Chem. B 2009, 113, 8675.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXms1KmsLY%3D&md5=2c89eea0b35da8f053a9d350ee469bd9CAS |
[9] W. Mamdouh, R. E. A. Kelly, M. D. Dong, L. N. Kantorovich, F. Besenbacher, J. Am. Chem. Soc. 2008, 130, 695.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXhsVWqsL%2FP&md5=037a0f998566099e05d6adf74e1e1b62CAS |
[10] D. M. Cyr, B. Venkataraman, G. W. Flynn, Chem. Mater. 1996, 8, 1600.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK28XksFantbw%3D&md5=5fc0af10c1d399bb21121c2429f832abCAS |
[11] S. De Feyter, A. Gesquiere, M. M. Abdel-Mottaleb, P. C. M. Grim, F. C. De Schryver, C. Meiners, M. Sieffert, S. Valiyaveettil, K. Müllen, Acc. Chem. Res. 2000, 33, 520.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3cXjsFOrsL4%3D&md5=bde6fcf95852213ae078139603614b44CAS |
[12] K. G. Nath, O. Ivasenko, J. A. Miwa, H. Dang, J. D. Wuest, A. Nanci, D. F. Perepichka, F. Rosei, J. Am. Chem. Soc. 2006, 128, 4212.
| 1:CAS:528:DC%2BD28XitlOis7w%3D&md5=b78d9c450d797b9674208966e3014318CAS |
[13] J. M. MacLeod, O. Ivasenko, D. F. Perepichka, F. Rosei, Nanotechnology 2007, 18, 424031.
| 1:STN:280:DC%2BC3MnlvVagsg%3D%3D&md5=97bc01ced15d7bf849af18698196dbbbCAS |
[14] K. G. Nath, O. Ivasenko, J. M. MacLeod, J. A. Miwa, J. D. Wuest, A. Nanci, D. F. Perepichka, F. Rosei, J. Phys. Chem. C 2007, 111, 16996.
| 1:CAS:528:DC%2BD2sXht1WmtLnO&md5=37c3da92dcd504a05eab65518fc55185CAS |
[15] M. Surin, P. Samori, Small 2007, 3, 190.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXhvFWhsb8%3D&md5=9702628d72cce8ba269c12453144584dCAS |
[16] J. A. A. W. Elemans, S. Lei, S. De Feyter, Angew. Chem. Int. Ed. 2009, 48, 7298.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXhtFGrs7zO&md5=cc6700eaa2d2b347bb8a1f5bf7d30d34CAS |
[17] L. Kampschulte, M. Lackinger, A. K. Maier, R. S. K. Kishore, S. Griessl, M. Schmittel, W. M. Heckl, J. Phys. Chem. B 2006, 110, 10829.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XksFWitb8%3D&md5=951cf1870371c5265b03894b95d1b594CAS |
[18] K. Tahara, S. Furukawa, H. Uji-I, T. Uchino, T. Ichikawa, J. Zhang, W. Mamdouh, M. Sonoda, F. C. De Schryver, S. De Feyter, Y. Tobe, J. Am. Chem. Soc. 2006, 128, 16613.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XhtlWmurrN&md5=7d173d768fd01ae0739909040dd6fe0cCAS |
[19] C. A. Palma, M. Bonini, T. Breiner, P. Samori, Adv. Mater. 2009, 21, 1383.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXltV2hu74%3D&md5=d05ad3d61197d653d4932c459d1d4188CAS |
[20] M. Lackinger, S. Griessl, W. A. Heckl, M. Hietschold, G. W. Flynn, Langmuir 2005, 21, 4984.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXjslekurw%3D&md5=60ed9832993d055b27992ed239598c89CAS |
[21] F. Oulevey, G. Gremaud, A. J. Kulik, B. Guisolan, Rev. Sci. Instrum. 1999, 70, 1889.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1MXhsFGlsLs%3D&md5=6502e7561d4b39a4ddb0bee3953446f2CAS |
[22] S. G. Prilliman, A. M. Kavanagh, E. C. Scher, S. T. Robertson, K. S. Hwang, V. L. Colvin, Rev. Sci. Instrum. 1998, 69, 3245.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1cXls1WjtL4%3D&md5=3bb772a8f289f8d4f4dce658c009adb7CAS |
[23] B. D. Sattin, M. C. Goh, Rev. Sci. Instrum. 2004, 75, 4778.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXpslCmtL4%3D&md5=01691da73f92f2d8df42c2ea34351d15CAS |
[24] W. A. English, K. W. Hipps, J. Phys. Chem. C 2008, 112, 2026.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXptVeltQ%3D%3D&md5=4d4a20976c319d7238f98ef813e8a84aCAS |
[25] R. Gutzler, T. Sirtl, J. F. Dienstmaier, K. Mahata, W. M. Heckl, M. Schmittel, M. Lackinger, J. Am. Chem. Soc. 2010, 132, 5084.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXjtlWqu7w%3D&md5=ff6619b6c7998e97c4358889034e226aCAS |
[26] C. Marie, F. Silly, L. Tortech, K. Mullen, D. Fichou, ACS Nano 2010, 4, 1288.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXhvFOrs7s%3D&md5=91f73dcbd9316fbbea60e99907a088edCAS |
[27] A. Kitaigorodskii, Acta Crystallogr. 1965, 18, 585.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaF2MXntVOjtQ%3D%3D&md5=6180c5fc6773541425d849eb189085dbCAS |
[28] K. E. Plass, A. L. Grzesiak, A. J. Matzger, Acc. Chem. Res. 2007, 40, 287.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXmtFSnsw%3D%3D&md5=66114b7fbe327eb2e2c3bd9b121cf0c3CAS |
[29] C. J. Li, Q. D. Zeng, Y. H. Liu, L. J. Wan, C. Wang, C. R. Wang, C. L. Bai, ChemPhysChem 2003, 4, 857.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXmvVegt7w%3D&md5=4b63bf1544c8ac8512c4411c49daf448CAS |
[30] E. Treossi, A. Liscio, X. L. Feng, V. Palermo, K. Muellen, P. Samori, Small 2009, 5, 112.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXhslelsLg%3D&md5=1404dd8f1c8d7e67c45b4933ded7edb1CAS |
[31] D. F. Perepichka, F. Rosei, Science 2009, 323, 216.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXptleitg%3D%3D&md5=45a9aadb8020a5f8ec26690f9ca0cf47CAS |
[32] Y. Okawa, M. Aono, Nature 2001, 409, 683.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3MXht1Gjsr4%3D&md5=0712fa635bbb85859ffc463e9447ef16CAS |
[33] Y. Okawa, M. Aono, J. Chem. Phys. 2001, 115, 2317.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3MXlt12ls7k%3D&md5=97a9a9078467898d01d06d05cc6882d2CAS |