Soft Core–Hard Shell Silicone Hybrid Nanoparticles Synthesized by Miniemulsion Polymerization: Effect of Silicone Content and Crosslinking on Latex Film Properties
Umaporn Paiphansiri A B E , Yuri Reyes A C E , Carola Hoffmann-Richter A , Sonja Theisinger A and Katharina Landfester B DA University of Ulm, Institute of Organic Chemistry III – Macromolecular Chemistry and Organic Materials, Albert-Einstein-Allee 11, 89081 Ulm, Germany.
B Max Planck Institute for Polymer Research, Ackermannweg 10, 55021 Mainz, Germany.
C Facultad de Quimica, Universidad Nacional Autónoma de México , Mexico and Programa de Ingeniería Molecular, Instituto Mexicano del Petróleo, México, DF 07730, Mexico.
D Corresponding author. Email: landfester@mpip-mainz.mpg.de
E §Authors contributed equally.
Australian Journal of Chemistry 64(8) 1054-1064 https://doi.org/10.1071/CH11145
Submitted: 14 April 2011 Accepted: 14 June 2011 Published: 19 August 2011
Abstract
Composite nanoparticles consisting of ‘soft’ silicone oil and ‘hard’ polyacrylate with core–shell morphology were obtained by a one-step synthesis via the miniemulsion process. Various parameters, i.e. the viscosity and amount of the silicone, the surfactant content, the (co)monomers affecting the particle size and morphology were studied. With an optimum hydrophilicity of the polymer shell, composite particles possessing a well-defined core–shell morphology were obtained as determined by transmission electron microscopy. The fully encapsulated silicone oil (40 wt-%) in a slightly crosslinked polyacrylate shell showed good film formation as revealed by atomic force microscopy. The ability to highly confine silicone oil in the composite film could clearly be evaluated from contact angle measurements. By finely changing the crosslink concentration in the polymeric shell, tunable hydrophobic properties of films cast from silicone core–polyacrylate shell latexes could be achieved. In addition, the high thermal resistance and excellent water-resistant properties of the film were shown by thermal gravimetric analysis and water swelling determination. These composite latexes are presented as new alternatives for practical utility in waterborne coatings.
References
[1] C. Zhou, M. Chen, M. Zhang, H. Zhang, Polym. Bull. 2007, 59, 699.| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXht1GhsLvP&md5=57663368d003078d0d6ba730ff87098bCAS |
[2] X. He, Y. Thomann, R. J. Leyrer, J. Rieger, Polym. Bull. 2006, 57, 785.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XhtlGiurfJ&md5=a111f09a6dd5595edc020898ba84e3a7CAS |
[3] C. Deleuze, M. H. Delville, V. Pellerin, C. Derail, L. Billon, Macromolecules 2009, 42, 5303.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXnsVOlsr4%3D&md5=1c882e96e3bd47550aa9d6e522319f16CAS |
[4] S. Lepizzera, M. Scheer, C. Fond, T. Pith, M. Lambla, J. Lang, Macromolecules 1997, 30, 7953.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2sXnsVSksLY%3D&md5=24a409ef696f5531f1402dc30c7a5e5bCAS |
[5] C. Y. Kan, D. S. Liu, X. Z. Kong, A. L. Zhu, J. Appl. Polym. Sci. 2001, 82, 3194.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3MXnvVeiurY%3D&md5=d6967d0f030dd2913dac4dbc1cde0876CAS |
[6] M. Zou, F. Huang, J. Nie, Z. Zhang, X. Ge, Polym. Int. 2005, 54, 861.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXksFyqurk%3D&md5=46393c47390b08ae305a9abf668c1723CAS |
[7] M. Lin, F. Chu, A. Guyot, J. L. Putaus, E. Bourgeat-Lami, Polymer 2005, 46, 1331.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXnsVOmsA%3D%3D&md5=195aede48edc396671d8ff2e92f14f50CAS |
[8] J. Ebenhoch, Kunststoffe Plast Europe 2004, 12, 162.
[9] D. Zhang, X. Jiang, C. Yang, J. Appl. Polym. Sci. 2005, 98, 347.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXpsFGgsro%3D&md5=2dd37dc6c16dbef0142541e7cebe2f7dCAS |
[10] M. Barrère, F. Ganachaud, D. Bendejacq, M.-A. Dourges, C. Maitre, P. Hemery, Polymer 2001, 42, 7239.
| Crossref | GoogleScholarGoogle Scholar |
[11] D. J. T. Hill, M. C. S. Perera, P. J. Pomery, H. K. Toh, Eur. Polym. J. 2000, 36, 241.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3cXpt1Wg&md5=681d6187dc93acbb45764a1278326449CAS |
[12] R. O. Pinho, E. Radovanovic, I. L. Torriani, I. V. P. Yoshida, Eur. Polym. J. 2004, 40, 615.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXhtVClt7o%3D&md5=95bf570cdf89c8d41c756a8cf6212b9fCAS |
[13] J. Liu, L.-Q. Chen, W. Li, L. M. Zhang, J. Macromol. Sci. A. 2004, 41, 913.
| Crossref | GoogleScholarGoogle Scholar |
[14] M. F. Tang, X. D. Fan, Y.-Y. Liu, X. Liu, Polym. Bull. 2007, 58, 371.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXlt1ylsw%3D%3D&md5=59e63f53805c73b4cde6681c1fdb975bCAS |
[15] M. Zou, S. Wang, Z. Zhang, X. Ge, Eur. Polym. J. 2005, 41, 2602.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXpvVWmsrw%3D&md5=23572cced857c47b4b9503d6ecd50f6eCAS |
[16] C. Y. Kan, X. Z. Kong, Q. Yuan, D. S. Liu, J. Appl. Polym. Sci. 2001, 80, 2251.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3MXis1Ontbw%3D&md5=fa05aa8161e7014041cd46cef7e78da4CAS |
[17] W.-D. He, C.-T. Cao, C.-Y. Pan, J. Appl. Polym. Sci. 1996, 61, 383.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK28Xjs1yis7c%3D&md5=c87eb527a2e30f4d8dd4c70b7f4850c9CAS |
[18] A. Guyot, K. Landfester, F. J. Schork, C. Wang, Prog. Polym. Sci. 2007, 32, 1439.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXhtlWns7%2FM&md5=91b5a7e11b1ee90b2a0c62ff11a72e30CAS |
[19] K. Landfester, Macromol. Rapid Commun. 2001, 22, 896.
| Crossref | GoogleScholarGoogle Scholar |
[20] I. Marcu, E. S. Daniels, V. L. Dimonie, J. E. Roberts, M. S. El-Aasser, Prog. Colloid Polym. Sci. 2004, 124, 31.
| 1:CAS:528:DC%2BD2cXltFOhs7w%3D&md5=f18739afc43737e761562d7a6f5b417fCAS |
[21] K. Landfester, U. Pawelzik, M. Antonietti, Polymer 2005, 46, 9892.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXhtFWqtLnE&md5=ddf6c699b47c719b19cf8ad76a40f20cCAS |
[22] R. Rodríguez, C. dl H. Alarcón, P. Ekanayake, P. J. McDonald, J. L. Keddie, M. J. Barandiaran, J. M. Asua, Macromolecules 2008, 41, 8537.
| Crossref | GoogleScholarGoogle Scholar |
[23] S. Cao, B. Liu, X. Deng, S. Li, Macromol. Biosci. 2005, 5, 669.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXmslGht7o%3D&md5=ff53ad8330be6dc610acccc8a188c5d0CAS |
[24] F. Tiarks, K. Landfester, M. Antonietti, Langmuir 2001, 17, 908.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3MXhsVehtw%3D%3D&md5=3db0c53e6a7092aa0558d69d8cc9fe2bCAS |
[25] E. P. T. de Givenchy, S. Amigoni, C. Martin, G. Andrada, L. Caillier, S. Géribaldi, F. Guittard, Langmuir 2009, 25, 6448.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXktlSlu7g%3D&md5=c7edc86d1b31e2f255b6f250ba14cf5eCAS |
[26] S. Kirsch, A. Pfau, J. Stubbs, D. Sundberg, Colloids Surf. A Physicochem. Eng. Asp. 2001, 183–185, 725.
| Crossref | GoogleScholarGoogle Scholar |