Free Standard AU & NZ Shipping For All Book Orders Over $80!
Register      Login
Australian Journal of Chemistry Australian Journal of Chemistry Society
An international journal for chemical science
RESEARCH FRONT

Low-Cost Fabrication of TiO2 Nanorod Photoelectrode for Dye-sensitized Solar Cell Application

Wei Zhang A , Rui Zhu A , Bin Liu A C and Seeram Ramakrishna B
+ Author Affiliations
- Author Affiliations

A Department of Chemical and Biomolecular Engineering, National University of Singapore, 117576, Singapore.

B Nanoscience and Nanotechnology Initiative, National University of Singapore, 117576, Singapore.

C Corresponding author. Email: cheliub@nus.edu.sg

Australian Journal of Chemistry 64(9) 1282-1287 https://doi.org/10.1071/CH11144
Submitted: 13 April 2011  Accepted: 6 July 2011   Published: 16 September 2011

Abstract

One-dimensional nanostructured semiconductor oxides that can provide a direct electron conduction pathway have received increasing attention as photoelectrodes in dye-sensitized solar cells. In this study, a facile and cost-effective method to produce high-quality TiO2 nanofibres is developed based on an electrospinning technique. In particular, poly(ethylene oxide) was selected and proved to be an excellent matrix polymer for electrospinning owing to its low decomposition temperature, wide availability, and environmental friendliness. In addition to obtaining TiO2 nanofibres with well-controlled morphology and pure anatase, the TiO2 grain size could be easily tuned by changing the preparation conditions. Based on the synthesized TiO2 nanofibres, dye-sensitized solar cells were fabricated and a high energy conversion efficiency of 6.44 % was achieved under illumination with air mass 1.5 (100 mW cm–2) simulated sunlight, which demonstrates the great potential of the synthesized TiO2 nanofibres as efficient photoelectrode material for low-cost dye-sensitized solar cells.


References

[1]  X. Chen, S. S. Mao, Chem. Rev. 2007, 107, 2891.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXmslyrurc%3D&md5=076c8f4629aa530ad4efa9b02b95400bCAS |

[2]  S. H. Kang, S. H. Choi, M. S. Kang, J. Y. Kim, H. S. Kim, T. Hyeon, Y. E. Sung, Adv. Mater. 2008, 20, 54.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXlt1Wgtbk%3D&md5=960dc285b07d778313e4ed3752ed0f5bCAS |

[3]  G. K. Mor, K. Shankar, M. Paulose, O. K. Varghese, C. A. Grimes, Nano Lett. 2006, 6, 215.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XjtVKq&md5=bb3a70bf7b5df3843a92a39a67946ecfCAS |

[4]  H. Kokubo, B. Ding, T. Naka, H. Tsuchihira, S. Shiratori, Nanotechnology 2007, 18, 165604.
         | Crossref | GoogleScholarGoogle Scholar |

[5]  E. Enache-Pommer, J. E. Boercker, E. S. Aydil, Appl. Phys. Lett. 2007, 91, 123116.
         | Crossref | GoogleScholarGoogle Scholar |

[6]  M. Law, L. E. Greene, J. C. Johnson, R. Saykally, P. Yang, Nat. Mater. 2005, 4, 455.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXks1Cit7o%3D&md5=e33bedd0d3cbf6cbd0610ffbce08f84fCAS |

[7]  K. Zhu, N. R. Neale, A. Miedaner, A. J. Frank, Nano Lett. 2007, 7, 69.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XhtlCitb7P&md5=7361d3868e7f9ff1d12b6da065cc0067CAS |

[8]  Z. Miao, D. Xu, J. Ouyang, G. Guo, X. Zhao, Y. Tang, Nano Lett. 2002, 2, 717.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38XjsVSiu70%3D&md5=e64db4bdde52a113e8b6895766e1abfeCAS |

[9]  J. J. Wu, C. J. Yu, J. Phys. Chem. B 2004, 108, 3377.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXhtlams7s%3D&md5=beaf6303ba3225ebc887a415b79c5377CAS |

[10]  Z. R. Tian, J. A. Voight, J. Liu, B. Mckenzie, H. Xu, J. Am. Chem. Soc. 2003, 125, 12384.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXntlyku74%3D&md5=92e48ab505c4f4b7ca2a3f592caaccc6CAS |

[11]  J. M. Wu, C. S. Han, T. Wen, Nanotechnology 2006, 17, 105.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XitVSktL0%3D&md5=d2129220ebd7deb29a9679a400c3f8d0CAS |

[12]  Y. W. Jun, M. F. Casula, J. H. Sim, S. Y. Kim, J. Cheon, A. P. Alivisatos, J. Am. Chem. Soc. 2003, 125, 15981.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXptlGqtbk%3D&md5=6afa2984a132a9c9c2aedb3fa6b61fc3CAS |

[13]  D. Li, Y. Xia, Nano Lett. 2003, 3, 555.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXhvF2ks7k%3D&md5=f23139108037eac5749fbe46e26f1c39CAS |

[14]  D. Li, J. T. McCann, Y. Xia, M. Marquez, J. Am. Ceram. Soc. 2006, 89, 1861.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XmtVamu7o%3D&md5=00824a52cac7652a01eb15f91191dccdCAS |

[15]  A. Kumar, R. Jose, K. Fujihara, J. Wang, S. Ramakrishna, Chem. Mater. 2007, 19, 6536.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXhtlOhu7fK&md5=114e15683ce2090b0b27e32b0959c1bcCAS |

[16]  R. Ramaseshan, S. Sundarrajan, R. Jose, S. Ramakrishna, J. Appl. Phys. 2007, 102, 111101.
         | Crossref | GoogleScholarGoogle Scholar |

[17]  A. Hagfeldt, G. Boschloo, L. Sun, L. Kloo, H. Pettersson, Chem. Rev. 2010, 110, 6595.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXhtFChs77M&md5=dc688f5de250b637b9304cf38a9fd6e1CAS |

[18]  J. Ovenstone, K. Yanagisawa, Chem. Mater. 1999, 11, 2770.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1MXlslGntL4%3D&md5=ca822d0c49114850f2a1a52d8b6b35eaCAS |

[19]  W. K. Son, J. H. Youk, T. S. Lee, W. H. Park, Polymer 2004, 45, 2959.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXis1Ghsbo%3D&md5=8245eb19c277c75ced6e58dbd26bd586CAS |

[20]  S. Megelski, J. S. Stephens, D. B. Chase, J. F. Rabolt, Macromolecules 2002, 35, 8456.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38XntlagtLo%3D&md5=cb1bf9c40f65349c7c7226001fd5d0a5CAS |

[21]  O. A. Mkhatresh, F. Heatley, Macromol. Chem. Phys. 2002, 203, 2273.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXhtV2iuro%3D&md5=c76d5bc5903044082fa393e906c29e72CAS |

[22]  V. Umansky, R. de-Picciotto, M. Heiblum, Appl. Phys. Lett. 1997, 71, 683.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2sXltF2itb8%3D&md5=8f428b78b7843892ff7dd874be4449f2CAS |

[23]  T. Sugimoto, X. Zhou, A. Muramatsu, J. Colloid Interface Sci. 2003, 259, 43.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXitVGitr0%3D&md5=b9162a28ebcf7c194f0cf57c27ea0763CAS |

[24]  S. M. Jo, M. Y. Song, Y. R. Ahn, C. R. Park, D. Y. Kim, J. Macromol. Sci. Part APure Appl. Chem. 2005, 42, 1529.
         | Crossref | GoogleScholarGoogle Scholar |

[25]  W. Nuansing, S. Ninmuang, W. Jarernboon, S. Maensiri, S. Seraphin, Mater. Sci. Eng. B 2006, 131, 147.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XmsF2itbk%3D&md5=fc317e80f8fbe148d4f9d05ae79f7d5cCAS |

[26]  P. Scherrer, Göttinger Nachrichten 1918, 2, 98.

[27]  J. van de Lagemaat, K. Benkstein, A. J. Frank, J. Phys. Chem. B 2001, 105, 12433.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3MXosFCqtLY%3D&md5=cc6035b86a78b963befb7b6b2c00218bCAS |

[28]  K. D. Benkstein, N. Kopidakis, J. van de Lagemaat, A. J. Frank, J. Phys. Chem. B 2003, 107, 7759.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXltFKqtLs%3D&md5=12f67442611062289a679ab3fa0f34f9CAS |

[29]  M. Y. Song, Y. R. Ahn, S. M. Jo, D. Y. Kim, Appl. Phys. Lett. 2005, 87, 113113.
         | Crossref | GoogleScholarGoogle Scholar |

[30]  M. Y. Song, D. K. Kim, K. J. Ihn, S. M. Jo, D. Y. Kim, Nanotechnology 2004, 15, 1861.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXhtFGitbc%3D&md5=89d190b6361bbe6225db3fdc50d100e7CAS |

[31]  K. Fujihara, A. Kumar, R. Jose, S. Ramakrishna, S. Uchida, Nanotechnology 2007, 18, 365709.
         | Crossref | GoogleScholarGoogle Scholar |

[32]  N. Kopidakis, N. R. Neale, K. Zhu, J. van de Lagemaat, A. J. Frank, Appl. Phys. Lett. 2005, 87, 202106.
         | Crossref | GoogleScholarGoogle Scholar |

[33]  S. Nakade, Y. Saito, W. Kubo, T. Kitamura, Y. Wada, S. Yanagida, J. Phys. Chem. B 2003, 107, 8607.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXltlaqu7c%3D&md5=ea3f5e5c43cf91e32dbddf990fb7ed55CAS |

[34]  K. Zhu, N. Kopidakis, N. R. Neale, J. van de Lagemaat, A. J. Frank, J. Phys. Chem. B 2006, 110, 25174.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XhtFOhtLzJ&md5=0459e178b2e1dc7f076b43d4511fc76dCAS |

[35]  P. S. Archana, R. Jose, C. Vijila, S. Ramakrishna, J. Phys. Chem. C 2009, 113, 21538.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXhtlChtbbF&md5=a234106a5b105f7525b5aa884b82d770CAS |

[36]  K. Fujihara, A. Kumar, R. Jose, S. Ramakrishna, S. Uchida, Nanotechnology 2007, 18, 365709.
         | Crossref | GoogleScholarGoogle Scholar |